This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated ...This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.展开更多
为了减小局部遮阴情况PSC(partial shading condition)下光伏系统的功率失配损失,提高最大功率点追踪MPPT(maximum power point tracking)的追踪速度和准确性,提出了基于天牛群优化BSO(beetle swarm optimiza?tion)算法的MPPT控制方法....为了减小局部遮阴情况PSC(partial shading condition)下光伏系统的功率失配损失,提高最大功率点追踪MPPT(maximum power point tracking)的追踪速度和准确性,提出了基于天牛群优化BSO(beetle swarm optimiza?tion)算法的MPPT控制方法.把由天牛须搜索BAS(beetle antennae search)借鉴粒子群的群体优化思想而得到的BSO方法应用到MPPT控制,利用天牛的个体进化和群体学习等优势来提高MPPT的追踪速度和精确度.设置了多种光照情况来作仿真验证,并用粒子群方法进行比较分析.结果表明,所提的方法追踪速度更快、精确度更高,且追踪过程更稳定、功率波动较小.展开更多
In wireless sensor network(WSN),the gateways which are placed far away from the base station(BS)forward the collected data to the BS through the gateways which are nearer to the BS.This leads to more energy consumptio...In wireless sensor network(WSN),the gateways which are placed far away from the base station(BS)forward the collected data to the BS through the gateways which are nearer to the BS.This leads to more energy consumption because the gateways nearer to the BS manages heavy traffic load.So,to over-come this issue,loads around the gateways are to be balanced by presenting energy efficient clustering approach.Besides,to enhance the lifetime of the net-work,optimal routing path is to be established between the source node and BS.For energy efficient load balancing and routing,multi objective based beetle swarm optimization(BSO)algorithm is presented in this paper.Using this algo-rithm,optimal clustering and routing are performed depend on the objective func-tions routingfitness and clusteringfitness.This approach leads to decrease the power consumption.Simulation results show that the performance of the pro-posed BSO based clustering and routing scheme attains better results than that of the existing algorithms in terms of energy consumption,delivery ratio,through-put and network lifetime.Namely,the proposed scheme increases throughput to 72%and network lifetime to 37%as well as it reduces delay to 37%than the existing optimization algorithms based clustering and routing schemes.展开更多
基金funded by the National Defense Science and Technology Innovation project,grant number ZZKY20223103the Basic Frontier InnovationProject at the Engineering University of PAP,grant number WJY202429+2 种基金the Basic Frontier lnnovation Project at the Engineering University of PAP,grant number WJY202408the Graduate Student Funding Priority Project,grant number JYWJ2024B006Key project of National Social Science Foundation,grant number 2023-SKJJ-A-116.
文摘This study introduces a novel algorithm known as the dung beetle optimization algorithm based on bounded reflection optimization andmulti-strategy fusion(BFDBO),which is designed to tackle the complexities associated with multi-UAV collaborative trajectory planning in intricate battlefield environments.Initially,a collaborative planning cost function for the multi-UAV system is formulated,thereby converting the trajectory planning challenge into an optimization problem.Building on the foundational dung beetle optimization(DBO)algorithm,BFDBO incorporates three significant innovations:a boundary reflection mechanism,an adaptive mixed exploration strategy,and a dynamic multi-scale mutation strategy.These enhancements are intended to optimize the equilibrium between local exploration and global exploitation,facilitating the discovery of globally optimal trajectories thatminimize the cost function.Numerical simulations utilizing the CEC2022 benchmark function indicate that all three enhancements of BFDBOpositively influence its performance,resulting in accelerated convergence and improved optimization accuracy relative to leading optimization algorithms.In two battlefield scenarios of varying complexities,BFDBO achieved a minimum of a 39% reduction in total trajectory planning costs when compared to DBO and three other highperformance variants,while also demonstrating superior average runtime.This evidence underscores the effectiveness and applicability of BFDBO in practical,real-world contexts.
文摘为了减小局部遮阴情况PSC(partial shading condition)下光伏系统的功率失配损失,提高最大功率点追踪MPPT(maximum power point tracking)的追踪速度和准确性,提出了基于天牛群优化BSO(beetle swarm optimiza?tion)算法的MPPT控制方法.把由天牛须搜索BAS(beetle antennae search)借鉴粒子群的群体优化思想而得到的BSO方法应用到MPPT控制,利用天牛的个体进化和群体学习等优势来提高MPPT的追踪速度和精确度.设置了多种光照情况来作仿真验证,并用粒子群方法进行比较分析.结果表明,所提的方法追踪速度更快、精确度更高,且追踪过程更稳定、功率波动较小.
文摘In wireless sensor network(WSN),the gateways which are placed far away from the base station(BS)forward the collected data to the BS through the gateways which are nearer to the BS.This leads to more energy consumption because the gateways nearer to the BS manages heavy traffic load.So,to over-come this issue,loads around the gateways are to be balanced by presenting energy efficient clustering approach.Besides,to enhance the lifetime of the net-work,optimal routing path is to be established between the source node and BS.For energy efficient load balancing and routing,multi objective based beetle swarm optimization(BSO)algorithm is presented in this paper.Using this algo-rithm,optimal clustering and routing are performed depend on the objective func-tions routingfitness and clusteringfitness.This approach leads to decrease the power consumption.Simulation results show that the performance of the pro-posed BSO based clustering and routing scheme attains better results than that of the existing algorithms in terms of energy consumption,delivery ratio,through-put and network lifetime.Namely,the proposed scheme increases throughput to 72%and network lifetime to 37%as well as it reduces delay to 37%than the existing optimization algorithms based clustering and routing schemes.