To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxi...To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.展开更多
Pig bedding biochar(PBBC)and Cd-enriched Perilla frutescenswere used for joint remediation of Cd-contaminated soil.Cd-contaminated soil was treated with different concentration of PBBC.The physiological and biochemica...Pig bedding biochar(PBBC)and Cd-enriched Perilla frutescenswere used for joint remediation of Cd-contaminated soil.Cd-contaminated soil was treated with different concentration of PBBC.The physiological and biochemical indicators of P.frutescens was evaluated under different Cd stress,including biomass,antioxidant system.Meanwhile Cd bioavailability,enzyme activity and nutrient bioavailability of the soil were monitored.Results revealed that PBBC at 1%and 5%levels led to decreased diethylenetriaminepentaacetic acid-extractable Cd(DTPA-Cd)content in soil by 19.09%-20.05%and 30.10%-47.08%,respectively.Moreover,PBBC promoted the transformation of exchangeable Cd(EXC-Cd)into a more stable form,enhanced soil enzymes(peroxidase,acid phosphatase,urease,and sucrase)activities,and alleviated P.frutescens's oxidative stress.PBBC increased its biomass,consequently enhancing Cd accumulation in the plant's,thereby improving Phytoextraction rate(PER).1%PBBC showed the best effect,with a total biomass increased 21.42%-26.94%,PERwas enhanced by 39.83%-54.82%.This study justifies that the combining PBBC with P.frutescens enhances Cd removal fromsoil,making the PBBC-P.frutescens a promising choice for treating Cd-polluted soil.展开更多
Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of...Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of bedding slopes,each with different weak interlayers:one with a homogeneous weak layer and another with discontinuous interfaces.Shaking table tests were conducted to compare their seismic performance.The results show that the peak ground acceleration(PGA)values above the weak interlayer in model A were significantly higher than those in model B,with the differences increasing as the input wave amplitude increased.The peak earth pressure(PEP)values at the tensile failure boundary at the rear edge of model A were also higher,whereas those within the weak layer at the toe of model A were lower than those in model B.Deformation analysis revealed that the maximum principal strain in model A initially appeared at the upper part of the tensile failure boundary,while the maximum shear strain was concentrated near the rear edge within the weak layer.In contrast,model B exhibited the opposite strain distribution.These findings provide insight into the impact of weak interlayers on the dynamic response and deformation of bedding slopes,highlighting the importance of considering this factor in seismic landslide investigations and failure mode predictions.展开更多
Shale reservoirs have abundant bedding structures,which deeply alter the mechanical properties of rocks,and thus affect the reservoir stimulation performance.Previous research mostly focuses on the effects of parallel...Shale reservoirs have abundant bedding structures,which deeply alter the mechanical properties of rocks,and thus affect the reservoir stimulation performance.Previous research mostly focuses on the effects of parallel bedding on fracture propagation,while the mechanical properties and mechanisms of fracture propagation remain unclear for rocks with complex wavy bedding(e.g.China’s continentalorigin Gulong shale).Herein,a mixed phase-field fracture model of the wavy-bedding shale was applied,based on the local tension-compression decomposition phase field method(PFM)and geometric structure generation algorithm for the bedding with controllable morphological features.The parametric analysis of fracture propagation behaviors in the case of abundant complex bedding structures showed that with wavy bedding,the vertical fracture propagation rate is far higher than the horizontal propagation rate.Moreover,the development of branch fractures is suppressed during the fracturing process of the wavy-bedding sample,and the stimulated volume is limited,which is different from the characteristic of parallel bedding that promotes horizontal fracture initiation and propagation.The results showed that larger amplitudes,higher frequencies,higher inclination angles,and larger strengths of wavy bedding all promote the formation of vertical penetrating fractures and suppress the growth of branch fractures.Under such circumstances,it is hard to create a well-connected fracture network after fracturing.This research may provide a theoretical basis for understanding fracture behaviors in rocks with such complex wavy bedding.展开更多
Steep bedding slopes are widely distributed in Southwestern China’s mountainous regions and have complex seismic responses and instability risks,causing casualties and property losses.Considering the high-seismic-int...Steep bedding slopes are widely distributed in Southwestern China’s mountainous regions and have complex seismic responses and instability risks,causing casualties and property losses.Considering the high-seismic-intensity environment,the dynamic failure evolution and instability mechanism of high-steep bedding slopes are simulated via the discrete element method and shaking table test.The dynamic response characteristics and cumulative failure effects of slopes subjected to continuous ground motion are investigated.The results show that the dynamic response characteristics of slopes under continuous earthquakes are influenced by geological and topographic conditions.Elevation has a distinct impact on both the slope interior and surface,with amplification effects more pronounced on the surface.The weak interlayers have different influences on the dynamic amplification effect of slopes.Weak interlayers have dynamic magnification effects on the slope surface at relative elevations of 0-0.33 and 0.82-1.0 but have weakening effects between 0.33 and 0.82.Moreover,the weak interlayers also have controlling effects on the dynamic instability mode of slopes.The characteristics of intergranular contact failure,fracture propagation,and displacement distribution are analyzed to reveal the dynamic failure evolution and instability mechanism through the discrete-element model.The dynamic instability process of slopes includes three stages:fracture initiation(0-0.2g),fracture expansion(0.2g-0.3g),and sliding instability(0.3g-0.6g).This work can provide a valuable reference for the seismic stability and reinforcement of complex slopes.展开更多
The increasing demand for mineral resources has significantly deepened the excavation depths of open-pit mines.Large-scale deformation disasters caused by landslides on open pit mine slopes occur frequently,posing sev...The increasing demand for mineral resources has significantly deepened the excavation depths of open-pit mines.Large-scale deformation disasters caused by landslides on open pit mine slopes occur frequently,posing severe threats to human safety and mine operations.Therefore,research on monitoring and early warning technologies for openpit mine landslides is of utmost importance.The emergence of the Newtonian force monitoring and early warning system has introduced an effective new approach for landslide monitoring in open-pit mines and has been successfully applied in the Nanfen openpit mine,where it monitored landslides and issued early warnings up to 16 hours in advance.This study focuses on the bedding rock slope on the footwall of the Nanfen open pit mine,analyzing the geological conditions of the mining area.Through laboratory experiments,the mechanical parameters and mineral composition characteristics of the regional rock mass(greenschist)are obtained.A geological mechanical model of the landslide was then constructed,and the NPR anchor cable numerical analysis model was developed using FLAC3D numerical simulation software to analyze the variation patterns of Newtonian force during landslides.Based on this analysis,the influence of different NPR anchor cable parameters(including anchor cable inclination angle,spacing,and pre-tension force)on the Newtonian force was investigated.Comparative results indicate that the optimal design parameters for the NPR anchor cables are a 25°inclination angle,40 m anchoring spacing,and a 400 kN pre-tension force.Additionally,it was found that the sensitivity of these three key parameters to the Newtonian force load,from highest to lowest,is as follows:pre-tension force,spacing,and inclination angle.This optimal configuration provides practical guidance for the design of NPR anchor cables in Newtonian force monitoring applications,offering theoretical and technical support for future landslide monitoring and early warning.展开更多
Earthquakes contribute to the failure of anti-dip bedding rock slopes(ABRSs)in seismically active regions.The pseudo-static method is commonly employed to assess the ABRSs stability.However,simplifying seismic effects...Earthquakes contribute to the failure of anti-dip bedding rock slopes(ABRSs)in seismically active regions.The pseudo-static method is commonly employed to assess the ABRSs stability.However,simplifying seismic effects as static loads often underestimates rock slope stability.The development of a practical stability analysis approach for ABRSs,particularly in slope engineering design,is imperative.This study proposes a stability evaluation model for ABRSs,incorporating the viscoelastic properties of rock,to quantitatively assess the safety factor and failure surface under seismic conditions.The mathematical description of the pseudo-dynamic method,derived in this study,accounts for the viscoelastic properties of ABRSs and integrates the HoekeBrown failure criterion with the Kelvin-Voigt stress-strain relationship of rocks.Furthermore,to address concurrent translation-rotation failure in ABRSs,upper bound limit analysis is utilized to quantify the safety factor.Through a comparison with existing literature,the proposed method considers the effect of harmonic vibration on the stability of ABRSs.The obtained safety factor is lower than that of the quasi-static method,with the resulting percentage change exceeding 5%.The critical failure surface demonstrates superior positional accuracy compared to the Aydan and Adhikary basal planes,with minimal error observed between the physical model test and the numerical simulation test.The parameter sensitivity analysis reveals that the inclination of ABRSs exhibits the highest sensitivity(Sk)value across the three levels of horizontal seismic coefficient(kh).The study aims to devise an expeditious calculation approach for assessing the stability of ABRSs during seismic events,intending to offer theoretical guidance for their stability analysis.展开更多
Methane in situ explosion fracturing(MISEF)technology improves deep reservoir permeability by generating multiple radial fractures around the wellbore,with fracture propagation significantly influenced by in situ stre...Methane in situ explosion fracturing(MISEF)technology improves deep reservoir permeability by generating multiple radial fractures around the wellbore,with fracture propagation significantly influenced by in situ stress and bedding structures.However,limited experimental studies on the combined effects of triaxial stress and explosive loading,along with detailed characterization of explosive damage,hinder further optimization of this technology.This study introduces an experimental method to simulate MISEF under triaxial stress,using CH4-O2 detonation to generate controllable explosive loads.Bedding shale samples are fractured in a pseudo-triaxial core holder.Micro-computed tomography(μ-CT)and nuclear magnetic resonance(NMR)are used to quantify three-dimensional(3D)fracture characteristics and pore structure evolution.LS-DYNA simulations are employed to elucidate fracture propagation and dynamic behavior.The results show that detonation produces explosive loads with overpressures of 69.929-84.338 MPa and pressure rise rates of up to 555.624 MPa/ms,exhibiting an oscillation-attenuation characteristic.μ-CT reveals 3-5 radial fractures,with 3D fracture volume and surface area decreasing as triaxial stress rises.Hoop stress inhibits fracture propagation more than axial stress.NMR analysis shows that explosive loading converts bound fluid to movable fluid,while in situ stress suppresses this process.With increasing triaxial stress,micropore(T2<10 ms)changes are minimal,while meso/macropore and fracture(T2>10 ms)NMR signals decrease significantly.Higher triaxial stress reduces water overpressure of stress loading chambers and vibrational displacement at sample boundaries.Numerical simulations indicate that explosive loading generates hoop tensile stress,which drives the formation of radial fractures.Triaxial stress increases hoop compressive stress,suppressing fracture propagation.Fractures initiate along bedding planes,forming cross-shaped or T-shaped patterns.展开更多
In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefo...In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefore,in this study,based on the stepped failure mode of bedding jointed rock slopes,considering the influence of the upper rock mass on the lower stepped sliding mass,the improved failure model for analyzing the interaction force(F_(AB))between two regions is constructed,and the safety factors(F_(S))of two regions and whole region are derived.In addition,this paper proposes a method to determine the existence of F_(AB) using their respective acceleration values(a_(A) and a_(B))when regions A and B are unstable.The influences of key parameters on two regions and the whole region are analyzed.The results show that the variation of the F_(AB) and F_(S) of two regions can be obtained accurately based on the improved failure model.The accuracy of the improved failure model is verified by comparative analysis.The research results can explain the interaction mechanism of two regions and the natural phenomenon of slope failure caused by the development of cracks.展开更多
The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were ca...The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were carried out to explore the dynamic responses of steep bedding slope-tunnel system under the coupling effect of rainfall and earthquake.Results show that the slope surface and elevation amplification effect exhibit pronounced nonlinear change caused by the tunnel and weak interlayers.When seismic wave propagates to tunnels,the weak interlayers and rock intersecting areas present complex wave field distribution characteristics.The dynamic responses of the slope are influenced by the frequency,amplitude,and direction of seismic waves.The acceleration amplification coefficient initially rises and then falls as increasing seismic frequency,peaking at 20 Hz.Additionally,the seismic damage process of slope is categorized into elastic(2-3 m/s^(2)),elastoplastic(4-5 m/s^(2))and plastic damage stages(≥6.5 m/s^(2)).In elastic stage,ΔMPGA(ratio of acceleration amplification factor)increases with increasing seismic intensity,without obvious strain distribution change.In plastic stage,ΔMPGA begins to gradually plummet,and the strain is mainly distributed in the damaged area.The modes of seismic damage in the slope-tunnel system are mainly of tensile failure of the weak interlayer,cracking failure of tunnel lining,formation of persistent cracks on the slope crest and waist,development and outward shearing of the sliding mass,and buckling failure at the slope foot under extrusion of the upper rock body.This study can serve as a reference for predicting the failure modes of tunnel-slope system in strong seismic regions.展开更多
The fracture network of hydraulic crack is significantly influenced by the bedding plane in coalbed methane extraction.Under mode Ⅱ loading,crack deflection holds a key position in hydraulic cracking,especially in hy...The fracture network of hydraulic crack is significantly influenced by the bedding plane in coalbed methane extraction.Under mode Ⅱ loading,crack deflection holds a key position in hydraulic cracking,especially in hydraulic shearing.This study first analyzed the crack deflection theory of layered rock.The semi-circle bending test under asymmetric loading is performed,and the four-dimensional Lattice Spring Model(4D-LSM)is established to examine how the bedding parameters affect coal crack propagation under mode Ⅱ dominant loads.The 4D-LSM results are comparable to the coal loading test results under quasi-mode Ⅱ and the analytical prediction of crack deflection theory.During mode Ⅱ loading,the coal crack propagation is greatly influenced by the angle,strength,and elastic modulus of the bedding plane,while the effects of thickness and spacing of bedding are insignificant.The crack of coal tends to propagate towards the bedding,following a decrease in bedding angle,a decrease in bedding strength,and an increase in elastic modulus.With higher bedding strength,spacing,and thickness,the peak load on the coal sample is higher.The influences of bedding strength,elastic modulus,spacing,and thickness on the peak load of coal samples and its anisotropy gradually decrease.It is proved that compared with the tangential stress ratio and traditional energy release ratio theories,the corrected energy release ratio criterion can more accurately predict the direction of crack deflection of coal,especially under mode Ⅱ loading.The results can provide assistance in the design of initiation pressure and fracturing direction in coal seam hydraulic fracturing.展开更多
[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental t...[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental temperature, stopping time of aeration, aeration time and aeration rate by 9 groups of experiments, so as to improve the water removal efficiency of adopted mixed and reduce operation energy consumption. [Result] The average water contents in the mixed bedding under 3 temperatures decreased by 4.58% ±2.91%, 13.17% ±3.77% and 10.8% ±7.72%, respectively; the highest water removal efficiency could be achieved under an experimental temperature at 45 ℃, stopping time of aeration of 15 min, aeration time of 7 min, and an aeration rate at 4 m^3/min, which formed the optimal factor combination mode of the operation parameter of the water control equipment; the effects of various experimental factors on water content in the bedding were in order of aeration ratetemperatureaeration timestopping time of aeration; and the effects of various experimental factors on water removal efficiency in the bedding were in order of temperatureaeration rateaeration timestopping time of aeration. [Conclusion] After the optimization of operation parameters of the water control equipment for the deep-litter bedding, water removal efficiency of the mixed bedding could be improved, and the operation energy consumption of the equipment could be reduced.展开更多
The selection and compatibility of the microbial strains and bedding materials in a deep-litter system is the primary issues for this ecological breeding technology. In this paper, we analyzed and summarized the categ...The selection and compatibility of the microbial strains and bedding materials in a deep-litter system is the primary issues for this ecological breeding technology. In this paper, we analyzed and summarized the categories of microbial strains and bedding materials suitable for a deep-litter system, the fermentation properties of different microbes, the parameter requirements of bedding materials, and the fermentation process led by functional microbial flora in a deep-litter system, with the objective to provide theoretical bases and practical guidance for the promotion of deep-litter breeding method nationwide.展开更多
The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding ...The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding strata as well as the internal friction angle of bedding plane and its cohesion all exert an influence upon the magnitude of the asymmetric rock pressure applied to tunnel. The feature that rock pressure applied to tunnel structure varies with the incUnation angle of bedding strata is discussed, At last, the safety factor, which is utilized to evaluate the working state of tunnel lining structure, is calculated for both symmetric and asymmetric lining structures. The calculation results elucidate that the asymmetric tunnel structure can be more superior to bear rock pressure in comparison with the symmetric one and should be adopted in engineering as far as possible.展开更多
Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in p...Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes.展开更多
To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles ...To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure.展开更多
Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s...Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides.展开更多
Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are c...Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.
基金supported by the Science and Technology Innovation of Fujian Agriculture and Forestry University(Nos.KFB23079 and KFB23065).
文摘Pig bedding biochar(PBBC)and Cd-enriched Perilla frutescenswere used for joint remediation of Cd-contaminated soil.Cd-contaminated soil was treated with different concentration of PBBC.The physiological and biochemical indicators of P.frutescens was evaluated under different Cd stress,including biomass,antioxidant system.Meanwhile Cd bioavailability,enzyme activity and nutrient bioavailability of the soil were monitored.Results revealed that PBBC at 1%and 5%levels led to decreased diethylenetriaminepentaacetic acid-extractable Cd(DTPA-Cd)content in soil by 19.09%-20.05%and 30.10%-47.08%,respectively.Moreover,PBBC promoted the transformation of exchangeable Cd(EXC-Cd)into a more stable form,enhanced soil enzymes(peroxidase,acid phosphatase,urease,and sucrase)activities,and alleviated P.frutescens's oxidative stress.PBBC increased its biomass,consequently enhancing Cd accumulation in the plant's,thereby improving Phytoextraction rate(PER).1%PBBC showed the best effect,with a total biomass increased 21.42%-26.94%,PERwas enhanced by 39.83%-54.82%.This study justifies that the combining PBBC with P.frutescens enhances Cd removal fromsoil,making the PBBC-P.frutescens a promising choice for treating Cd-polluted soil.
基金funding support from the National Nature Science Foundation of China(Grant No.41931296)the Open Research Project of Sichuan Provincial Key Laboratory for Major Hazard Source Monitoring and Control(Grant No.KFKT2023-4)the 57#Project(Grant No.JH2024015).
文摘Weak interlayers play a crucial role in the seismic performance of bedding slopes;however,the effects of structural surface development within these layers remain underexplored.This study presents two scaled models of bedding slopes,each with different weak interlayers:one with a homogeneous weak layer and another with discontinuous interfaces.Shaking table tests were conducted to compare their seismic performance.The results show that the peak ground acceleration(PGA)values above the weak interlayer in model A were significantly higher than those in model B,with the differences increasing as the input wave amplitude increased.The peak earth pressure(PEP)values at the tensile failure boundary at the rear edge of model A were also higher,whereas those within the weak layer at the toe of model A were lower than those in model B.Deformation analysis revealed that the maximum principal strain in model A initially appeared at the upper part of the tensile failure boundary,while the maximum shear strain was concentrated near the rear edge within the weak layer.In contrast,model B exhibited the opposite strain distribution.These findings provide insight into the impact of weak interlayers on the dynamic response and deformation of bedding slopes,highlighting the importance of considering this factor in seismic landslide investigations and failure mode predictions.
基金supported by the Technology Project of CNPC(Grant No.2023ZZ08)the National Natural Science Foundation of China(Grant No.52274058)the USTC Research Funds of the Double First-Class Initiative(Grant No.YD2090002025).
文摘Shale reservoirs have abundant bedding structures,which deeply alter the mechanical properties of rocks,and thus affect the reservoir stimulation performance.Previous research mostly focuses on the effects of parallel bedding on fracture propagation,while the mechanical properties and mechanisms of fracture propagation remain unclear for rocks with complex wavy bedding(e.g.China’s continentalorigin Gulong shale).Herein,a mixed phase-field fracture model of the wavy-bedding shale was applied,based on the local tension-compression decomposition phase field method(PFM)and geometric structure generation algorithm for the bedding with controllable morphological features.The parametric analysis of fracture propagation behaviors in the case of abundant complex bedding structures showed that with wavy bedding,the vertical fracture propagation rate is far higher than the horizontal propagation rate.Moreover,the development of branch fractures is suppressed during the fracturing process of the wavy-bedding sample,and the stimulated volume is limited,which is different from the characteristic of parallel bedding that promotes horizontal fracture initiation and propagation.The results showed that larger amplitudes,higher frequencies,higher inclination angles,and larger strengths of wavy bedding all promote the formation of vertical penetrating fractures and suppress the growth of branch fractures.Under such circumstances,it is hard to create a well-connected fracture network after fracturing.This research may provide a theoretical basis for understanding fracture behaviors in rocks with such complex wavy bedding.
基金Project(52108361)supported by the National Natural Science Foundation of ChinaProjects(BK20231217,BK20220265)supported by the Basic Research Program of Jiangsu Province,China+5 种基金Project(sklhse-KF-2025-D-02)supported by the Open Research Fund Program of the State Key Laboratory of Hydroscience and Engineering,ChinaProject(2023ZB15)supported by the Independent Research Project of the State Key Laboratory of Subtropical Building and Urban Science,ChinaProject(SKLGME023001)supported by the Key Laboratory of Geomechanics and Geotechnical Engineering Safety,the Chinese Academy of SciencesProject(2025A04J3992)supported by the Basic and Applied Basic Research Project of the Guangzhou Science and Technology Bureau,ChinaProject(SKLGP2022Z015)supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project,ChinaProjects(2023YFS0436,2024NSFSC1715)supported by the Science and Technology Department of Sichuan Province,China。
文摘Steep bedding slopes are widely distributed in Southwestern China’s mountainous regions and have complex seismic responses and instability risks,causing casualties and property losses.Considering the high-seismic-intensity environment,the dynamic failure evolution and instability mechanism of high-steep bedding slopes are simulated via the discrete element method and shaking table test.The dynamic response characteristics and cumulative failure effects of slopes subjected to continuous ground motion are investigated.The results show that the dynamic response characteristics of slopes under continuous earthquakes are influenced by geological and topographic conditions.Elevation has a distinct impact on both the slope interior and surface,with amplification effects more pronounced on the surface.The weak interlayers have different influences on the dynamic amplification effect of slopes.Weak interlayers have dynamic magnification effects on the slope surface at relative elevations of 0-0.33 and 0.82-1.0 but have weakening effects between 0.33 and 0.82.Moreover,the weak interlayers also have controlling effects on the dynamic instability mode of slopes.The characteristics of intergranular contact failure,fracture propagation,and displacement distribution are analyzed to reveal the dynamic failure evolution and instability mechanism through the discrete-element model.The dynamic instability process of slopes includes three stages:fracture initiation(0-0.2g),fracture expansion(0.2g-0.3g),and sliding instability(0.3g-0.6g).This work can provide a valuable reference for the seismic stability and reinforcement of complex slopes.
基金supported by collaborative innovation center for prevention and control of mountain geological hazards of Zhejiang province(Project number:PCMGH-2022-06)。
文摘The increasing demand for mineral resources has significantly deepened the excavation depths of open-pit mines.Large-scale deformation disasters caused by landslides on open pit mine slopes occur frequently,posing severe threats to human safety and mine operations.Therefore,research on monitoring and early warning technologies for openpit mine landslides is of utmost importance.The emergence of the Newtonian force monitoring and early warning system has introduced an effective new approach for landslide monitoring in open-pit mines and has been successfully applied in the Nanfen openpit mine,where it monitored landslides and issued early warnings up to 16 hours in advance.This study focuses on the bedding rock slope on the footwall of the Nanfen open pit mine,analyzing the geological conditions of the mining area.Through laboratory experiments,the mechanical parameters and mineral composition characteristics of the regional rock mass(greenschist)are obtained.A geological mechanical model of the landslide was then constructed,and the NPR anchor cable numerical analysis model was developed using FLAC3D numerical simulation software to analyze the variation patterns of Newtonian force during landslides.Based on this analysis,the influence of different NPR anchor cable parameters(including anchor cable inclination angle,spacing,and pre-tension force)on the Newtonian force was investigated.Comparative results indicate that the optimal design parameters for the NPR anchor cables are a 25°inclination angle,40 m anchoring spacing,and a 400 kN pre-tension force.Additionally,it was found that the sensitivity of these three key parameters to the Newtonian force load,from highest to lowest,is as follows:pre-tension force,spacing,and inclination angle.This optimal configuration provides practical guidance for the design of NPR anchor cables in Newtonian force monitoring applications,offering theoretical and technical support for future landslide monitoring and early warning.
基金funding support from the National Natural Science Foundation of China(Grant No.42072303)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant No.SKLGP2021Z004).
文摘Earthquakes contribute to the failure of anti-dip bedding rock slopes(ABRSs)in seismically active regions.The pseudo-static method is commonly employed to assess the ABRSs stability.However,simplifying seismic effects as static loads often underestimates rock slope stability.The development of a practical stability analysis approach for ABRSs,particularly in slope engineering design,is imperative.This study proposes a stability evaluation model for ABRSs,incorporating the viscoelastic properties of rock,to quantitatively assess the safety factor and failure surface under seismic conditions.The mathematical description of the pseudo-dynamic method,derived in this study,accounts for the viscoelastic properties of ABRSs and integrates the HoekeBrown failure criterion with the Kelvin-Voigt stress-strain relationship of rocks.Furthermore,to address concurrent translation-rotation failure in ABRSs,upper bound limit analysis is utilized to quantify the safety factor.Through a comparison with existing literature,the proposed method considers the effect of harmonic vibration on the stability of ABRSs.The obtained safety factor is lower than that of the quasi-static method,with the resulting percentage change exceeding 5%.The critical failure surface demonstrates superior positional accuracy compared to the Aydan and Adhikary basal planes,with minimal error observed between the physical model test and the numerical simulation test.The parameter sensitivity analysis reveals that the inclination of ABRSs exhibits the highest sensitivity(Sk)value across the three levels of horizontal seismic coefficient(kh).The study aims to devise an expeditious calculation approach for assessing the stability of ABRSs during seismic events,intending to offer theoretical guidance for their stability analysis.
基金the National Key Research and Development Program of China(Grant No.2020YFA0711800)Jiangsu Provincial Innovation Capacity Building Program(Jiangsu Safety Emergency Equipment Technology Innovation Center(Grant No.BM2022013)the National Natural Science Foundation of China(Grant No.12372373).
文摘Methane in situ explosion fracturing(MISEF)technology improves deep reservoir permeability by generating multiple radial fractures around the wellbore,with fracture propagation significantly influenced by in situ stress and bedding structures.However,limited experimental studies on the combined effects of triaxial stress and explosive loading,along with detailed characterization of explosive damage,hinder further optimization of this technology.This study introduces an experimental method to simulate MISEF under triaxial stress,using CH4-O2 detonation to generate controllable explosive loads.Bedding shale samples are fractured in a pseudo-triaxial core holder.Micro-computed tomography(μ-CT)and nuclear magnetic resonance(NMR)are used to quantify three-dimensional(3D)fracture characteristics and pore structure evolution.LS-DYNA simulations are employed to elucidate fracture propagation and dynamic behavior.The results show that detonation produces explosive loads with overpressures of 69.929-84.338 MPa and pressure rise rates of up to 555.624 MPa/ms,exhibiting an oscillation-attenuation characteristic.μ-CT reveals 3-5 radial fractures,with 3D fracture volume and surface area decreasing as triaxial stress rises.Hoop stress inhibits fracture propagation more than axial stress.NMR analysis shows that explosive loading converts bound fluid to movable fluid,while in situ stress suppresses this process.With increasing triaxial stress,micropore(T2<10 ms)changes are minimal,while meso/macropore and fracture(T2>10 ms)NMR signals decrease significantly.Higher triaxial stress reduces water overpressure of stress loading chambers and vibrational displacement at sample boundaries.Numerical simulations indicate that explosive loading generates hoop tensile stress,which drives the formation of radial fractures.Triaxial stress increases hoop compressive stress,suppressing fracture propagation.Fractures initiate along bedding planes,forming cross-shaped or T-shaped patterns.
基金Projects(52208369,52309138,52108320)supported by the National Natural Science Foundation of ChinaProjects(2023NSFSC0284,2025ZNSFSC0409)supported by the Sichuan Science and Technology Program,ChinaProject(U22468214)supported by the Joint Fund Project for Railway Basic Research by the National Natural Science Foundation of China and China State Railway Group Co.,Ltd.
文摘In the practical slope engineering,the stability of lower sliding mass(region A)with back tensile cracks of the jointed rock slope attracts more attentions,but the upper rock mass(region B)may also be unstable.Therefore,in this study,based on the stepped failure mode of bedding jointed rock slopes,considering the influence of the upper rock mass on the lower stepped sliding mass,the improved failure model for analyzing the interaction force(F_(AB))between two regions is constructed,and the safety factors(F_(S))of two regions and whole region are derived.In addition,this paper proposes a method to determine the existence of F_(AB) using their respective acceleration values(a_(A) and a_(B))when regions A and B are unstable.The influences of key parameters on two regions and the whole region are analyzed.The results show that the variation of the F_(AB) and F_(S) of two regions can be obtained accurately based on the improved failure model.The accuracy of the improved failure model is verified by comparative analysis.The research results can explain the interaction mechanism of two regions and the natural phenomenon of slope failure caused by the development of cracks.
基金supported by the National Natural Science Foundation of China (Grant No.52109125)the Natural Science Foundation of Jiangsu Province,China (Grant No.BK20231217)the Key Laboratory of Geomechanics and Geotechnical Engineering Safety,Chinese Academy of Sciences (Grant No.SKLGME023001).
文摘The coupling effects of rainfall,earthquake,and complex topographic and geological conditions complicate the dynamic responses and disasters of slope-tunnel systems.For this,the large-scale shaking table tests were carried out to explore the dynamic responses of steep bedding slope-tunnel system under the coupling effect of rainfall and earthquake.Results show that the slope surface and elevation amplification effect exhibit pronounced nonlinear change caused by the tunnel and weak interlayers.When seismic wave propagates to tunnels,the weak interlayers and rock intersecting areas present complex wave field distribution characteristics.The dynamic responses of the slope are influenced by the frequency,amplitude,and direction of seismic waves.The acceleration amplification coefficient initially rises and then falls as increasing seismic frequency,peaking at 20 Hz.Additionally,the seismic damage process of slope is categorized into elastic(2-3 m/s^(2)),elastoplastic(4-5 m/s^(2))and plastic damage stages(≥6.5 m/s^(2)).In elastic stage,ΔMPGA(ratio of acceleration amplification factor)increases with increasing seismic intensity,without obvious strain distribution change.In plastic stage,ΔMPGA begins to gradually plummet,and the strain is mainly distributed in the damaged area.The modes of seismic damage in the slope-tunnel system are mainly of tensile failure of the weak interlayer,cracking failure of tunnel lining,formation of persistent cracks on the slope crest and waist,development and outward shearing of the sliding mass,and buckling failure at the slope foot under extrusion of the upper rock body.This study can serve as a reference for predicting the failure modes of tunnel-slope system in strong seismic regions.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52225402,U1910206)the National Key Research and Development Project of China(Grant No.2022YFC3004602).
文摘The fracture network of hydraulic crack is significantly influenced by the bedding plane in coalbed methane extraction.Under mode Ⅱ loading,crack deflection holds a key position in hydraulic cracking,especially in hydraulic shearing.This study first analyzed the crack deflection theory of layered rock.The semi-circle bending test under asymmetric loading is performed,and the four-dimensional Lattice Spring Model(4D-LSM)is established to examine how the bedding parameters affect coal crack propagation under mode Ⅱ dominant loads.The 4D-LSM results are comparable to the coal loading test results under quasi-mode Ⅱ and the analytical prediction of crack deflection theory.During mode Ⅱ loading,the coal crack propagation is greatly influenced by the angle,strength,and elastic modulus of the bedding plane,while the effects of thickness and spacing of bedding are insignificant.The crack of coal tends to propagate towards the bedding,following a decrease in bedding angle,a decrease in bedding strength,and an increase in elastic modulus.With higher bedding strength,spacing,and thickness,the peak load on the coal sample is higher.The influences of bedding strength,elastic modulus,spacing,and thickness on the peak load of coal samples and its anisotropy gradually decrease.It is proved that compared with the tangential stress ratio and traditional energy release ratio theories,the corrected energy release ratio criterion can more accurately predict the direction of crack deflection of coal,especially under mode Ⅱ loading.The results can provide assistance in the design of initiation pressure and fracturing direction in coal seam hydraulic fracturing.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(13)3073)Jiangsu Science and Technology Support Program(BE2014-342-1)~~
文摘[Objective] The study was conducted to optimize the operation parameters of water control equipment for deep-litter beddings. [Method] A four-factor three-level orthogonal design was adopted to optimize experimental temperature, stopping time of aeration, aeration time and aeration rate by 9 groups of experiments, so as to improve the water removal efficiency of adopted mixed and reduce operation energy consumption. [Result] The average water contents in the mixed bedding under 3 temperatures decreased by 4.58% ±2.91%, 13.17% ±3.77% and 10.8% ±7.72%, respectively; the highest water removal efficiency could be achieved under an experimental temperature at 45 ℃, stopping time of aeration of 15 min, aeration time of 7 min, and an aeration rate at 4 m^3/min, which formed the optimal factor combination mode of the operation parameter of the water control equipment; the effects of various experimental factors on water content in the bedding were in order of aeration ratetemperatureaeration timestopping time of aeration; and the effects of various experimental factors on water removal efficiency in the bedding were in order of temperatureaeration rateaeration timestopping time of aeration. [Conclusion] After the optimization of operation parameters of the water control equipment for the deep-litter bedding, water removal efficiency of the mixed bedding could be improved, and the operation energy consumption of the equipment could be reduced.
基金Supported by the Special Fund for the Independent Innovation of Agricultural Sciences and Technology in Jiangsu Province[cx(12)1001-04]~~
文摘The selection and compatibility of the microbial strains and bedding materials in a deep-litter system is the primary issues for this ecological breeding technology. In this paper, we analyzed and summarized the categories of microbial strains and bedding materials suitable for a deep-litter system, the fermentation properties of different microbes, the parameter requirements of bedding materials, and the fermentation process led by functional microbial flora in a deep-litter system, with the objective to provide theoretical bases and practical guidance for the promotion of deep-litter breeding method nationwide.
文摘The method to calculate rock pressure to which the lining structure of tunnel with shallow depth is subjected in geologically inclined bedding strata is analyzed and put forward. Both the inclination angle of bedding strata as well as the internal friction angle of bedding plane and its cohesion all exert an influence upon the magnitude of the asymmetric rock pressure applied to tunnel. The feature that rock pressure applied to tunnel structure varies with the incUnation angle of bedding strata is discussed, At last, the safety factor, which is utilized to evaluate the working state of tunnel lining structure, is calculated for both symmetric and asymmetric lining structures. The calculation results elucidate that the asymmetric tunnel structure can be more superior to bear rock pressure in comparison with the symmetric one and should be adopted in engineering as far as possible.
基金funded by the Sichuan Science and Technology Program (grant number 2022NSFSC1176)the open Fund for National Key Laboratory of Geological Disaster Prevention and Environmental Protection (grant number SKLGP2022K027)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2022Z001)。
文摘Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes.
基金the Chinese Scholarship Council (No. 201706370022) for the financial support to the joint Ph.D. programme at the University of Wollongong,Australia
文摘To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure.
基金funded by the National Natural Science Foundation of China (Grant No. 41825018)the National Key Research and Development Plan of China (Grant No. 2019YFC1509704)the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, Grant No. 2019QZKK0904)。
文摘Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides.
基金financially supported by the National Natural Science Foundation of China(No.42002133,42072150)Natural Science Foundation of Beijing(8204069)+1 种基金Strategic Cooperation Project of PetroChina and CUPB(ZLZX2020-01-06-01)Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)
文摘Core,thin section,conventional and image logs are used to provide insights into distribution of fractures in fine grained sedimentary rocks of Permian Lucaogou Formation in Jimusar Sag.Bedding parallel fractures are common in fine grained sedimentary rocks which are characterized by layered structures.Core and thin section analysis reveal that fractures in Lucaogou Formation include tectonic inclined fracture,bedding parallel fracture,and abnormal high pressure fracture.Bedding parallel fractures are abundant,but only minor amounts of them remain open,and most of them are partly to fully sealed by carbonate minerals(calcite)and bitumen.Bedding parallel fractures result in a rapid decrease in resistivity,and they are recognized on image logs to extend along bedding planes and have discontinuous surfaces due to partly-fully filled resistive carbonate minerals as well as late stage dissolution.A comprehensive interpretation of distribution of bedding parallel fractures is performed with green line,red line,yellow line and blue line representing bedding planes,induced fractures,resistive fractures,and open(bedding and inclined)fractures,respectively.The strike of bedding parallel fractures is coinciding with bedding planes.Bedding parallel fractures are closely associated with the amounts of bedding planes,and high density of bedding planes favor the formation of bedding parallel fractures.Alternating dark and bright layers have the most abundant bedding parallel fractures on the image logs,and the bedding parallel fractures are always associated with low resistivity zones.The results above may help optimize sweet spots in fine grained sedimentary rocks,and improve future fracturing design and optimize well spacing.