期刊文献+
共找到2,237篇文章
< 1 2 112 >
每页显示 20 50 100
A cohesion loss model for determining residual strength of deep bedded sandstone
1
作者 SONG Zhi-xiang ZHANG Jun-wen +12 位作者 ZHANG Yu-jie WU Shao-kang BAI Xu-yang ZHANG Li-chao ZHANG Sui-lin ZHANG Xu-wen FAN Guang-chen LI Wen-jun ZENG Ban-quan WANG Shi-ji SUN Xiao-yan SANG Pei-miao LI Ning 《Journal of Central South University》 2025年第7期2593-2618,共26页
Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep ch... Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep chambers.Therefore,previous residual strength models of rocks established were reviewed.And corresponding related problems were stated.Subsequently,starting from the effects of bedding and whole life-cycle evolution process,series of triaxial mechanical tests of deep bedded sandstone with five bedding angles were conducted under different confining pressures.Then,six residual strength models considering the effects of bedding and whole life-cycle evolution process were established and evaluated.Finally,a cohesion loss model for determining residual strength of deep bedded sandstone was verified.The results showed that the effects of bedding and whole life-cycle evolution process had both significant influences on the evolution characteristic of residual strength of deep bedded sandstone.Additionally,residual strength parameters:residual cohesion and residual internal friction angle of deep bedded sandstone were not constant,which both significantly changed with increasing bedding angle.Besides,the cohesion loss model was the most suitable for determining and estimating the residual strength of bedded rocks,which could provide more accurate theoretical guidance for the stability control of deep chambers. 展开更多
关键词 residual strength deep bedded sandstone whole life-cycle evolution process cohesion loss model rock mechanics
在线阅读 下载PDF
Mechanical behaviours of bedded sandstone under hydromechanical coupling 被引量:1
2
作者 Junwen Zhang Zhixiang Song +7 位作者 Lichao Zhang Shaokang Wu Shanyong Wang Yang Zhang Xukai Dong Jinxin Wang Yanbo Han Baohua Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1245-1261,共17页
The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of be... The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines. 展开更多
关键词 Hydromechanical coupling bedded sandstones Mechanical behaviour Bedding effect Failure mechanism
在线阅读 下载PDF
Mechanism of Interaction between Anchored Slide-Resistant Piles and Landslides with Weak-Hard Interbedded Bedrock
3
作者 Guihua Wang Changdong Li +5 位作者 Xin He Taijiang Chen Jie Meng Wenmin Yao Yongquan Zhang Huawei Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2024年第6期2163-2168,共6页
0 INTRODUCTION Landslides occur globally and frequently,which often cause huge casualties and property losses(Cui et al.,2021).Therefore,landslide prevention is critical and challenging.Anchored slide-resistant piles ... 0 INTRODUCTION Landslides occur globally and frequently,which often cause huge casualties and property losses(Cui et al.,2021).Therefore,landslide prevention is critical and challenging.Anchored slide-resistant piles are an effective support structure for a landslide with a thick sliding mass or strong thrust(Kang et al.,2009). 展开更多
关键词 LANDSLIDE bedded rock
原文传递
Stability of bedded rock slopes subjected to hydro-fluctuation and associated strength deterioration
4
作者 Bin Xu Xinrong Liu +2 位作者 Yue Liang Xiaohan Zhou Zuliang Zhong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3233-3257,共25页
Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.... Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.Three models of typical bedded rock slopes(BRSs),i.e.gently(GIS),moderately(MIS),and steeply(SIS)inclined slopes,were proposed according to field investigations.The dynamic response mechanism and stability of the BRSs,affected by the rock mass deterioration of the HFB,were investigated by the shaking table test and the universal distinct element code(UDEC)simulation.Specifically,the amplification coefficient of the peak ground acceleration(PGA)of the slope was gradually attenuated under multiple seismic loads,and the acceleration response showed obvious“surface effect”and“elevation effect”in the horizontal and vertical directions,respectively.The“S-type”cubic function and“steep-rise type”exponential function were used to characterize the cumulative damage evolution of the slope caused by microseismic waves(low seismic waves)and high seismic waves,respectively.According to the dynamic responses of the acceleration,cumulative displacement,rock pressure,pore water pressure,damping ratio,natural frequency,stability coefficient,and sliding velocity of the slope,the typical evolution processes of the dynamic cumulative damage and instability failure of the slope were generalized,and the numerical and experimental results were compared.Considering the dynamic effects of the slope height(SH),slope angle(SA),bedding plane thickness(BPT),dip angle of the bedding plane(DABP),dynamic load amplitude(DLA),dynamic load frequency(DLF),height of water level of the hydro-fluctuation belt(HWLHFB),degradation range of the hydro-fluctuation belt(DRHFB),and degradation shape of the hydro-fluctuation belt(DSHFB),the sensitivity of factors influencing the slope dynamic stability using the orthogonal analysis method(OAM)was DLA>DRHFB>SA>SH>DLF>HWLHFB>DSHFB>DABP>BPT. 展开更多
关键词 bedded rock slopes Hydro-fluctuation belt Shaking table test UDEC simulation Dynamic response mechanism
在线阅读 下载PDF
Strength and deformation behaviors of bedded rock mass under bolt reinforcement 被引量:11
5
作者 Wenxin Zhu Hongwen Jing +2 位作者 Lijun Yang Bing Pan Haijian Su 《International Journal of Mining Science and Technology》 EI CSCD 2018年第4期591-597,共7页
The mechanism of bolt support is an important topic in mining engineering and slope treatment. The artificial material and loading system were self-developed to study the influence of bedding cohesion and bolt number ... The mechanism of bolt support is an important topic in mining engineering and slope treatment. The artificial material and loading system were self-developed to study the influence of bedding cohesion and bolt number on the anchoring behavior of bedded rock mass. The results show that, both peak strength and elasticity modulus increase gradually with the increase of bedding cohesion and bolt number. The axial stress–strain curve of bedded rock mass under the reinforcement of bolts presents the features of strain-softening and secondary strengthening. Finally, anchoring behavior of bedded rock mass with different bolt numbers was simulated by using FLAC3 D numerical program and the results were compared with the experimental results. This study can provide certain bases to the stability control and support design of bedded rock mass in roadway. 展开更多
关键词 bedded rock mass Anchoring behavior Peak strength Bedding cohesion Secondary strengthening
在线阅读 下载PDF
Characterization and evaluation of brittleness of deep bedded sandstone from the perspective of the whole life-cycle evolution process 被引量:6
6
作者 Zhixiang Song Junwen Zhang +2 位作者 Yang Zhang Xukai Dong Shanyong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期481-502,共22页
The quantitative determination and evaluation of rock brittleness are crucial for the estimation of excavation efficiency and the improvement of hydraulic fracturing efficiency.Therefore,a“three-stage”triaxial loadi... The quantitative determination and evaluation of rock brittleness are crucial for the estimation of excavation efficiency and the improvement of hydraulic fracturing efficiency.Therefore,a“three-stage”triaxial loading and unloading stress path is designed and proposed.Subsequently,six brittleness indices are selected.In addition,the evolution characteristics of the six brittleness indices selected are characterized based on the bedding effect and the effect of confining pressure.Then,the entropy weight method(EWM)is introduced to assign weight to the six brittleness indices,and the comprehensive brittleness index Bcis defined and evaluated.Next,the new brittleness classification standard is determined,and the brittleness differences between the two stress paths are quantified.Finally,compared with the previous evaluation methods,the rationality of the proposed comprehensive brittleness index Bcis also verified.These results indicate that the proposed brittleness index Bccan reflect the brittle characteristics of deep bedded sandstone from the perspective of the whole life-cycle evolution process.Accordingly,the method proposed seems to offer reliable evaluations of the brittleness of deep bedded sandstone in deep engineering practices,although further validation is necessary. 展开更多
关键词 BRITTLENESS Deep bedded sandstone Whole life-cycle evolution process Bedding effect Effect of confining pressure Entropy weight method
在线阅读 下载PDF
Effect of the inclined weak interlayers on the rainfall response of a bedded rock slope 被引量:7
7
作者 LI Long-qi JU Neng-pan 《Journal of Mountain Science》 SCIE CSCD 2016年第9期1663-1674,共12页
Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at vari... Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo- mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon o.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes. 展开更多
关键词 bedded rock slope Inclined weakinterlayer RAINFALL Model test
原文传递
Bedding plane-embedded augmented virtual internal bonds for fracture propagation simulation in shale
8
作者 Zihan Liu Zhennan Zhang Ahmad Ghassemi 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第3期180-185,共6页
To effectively simulate the fracture propagation in shale,the bedding plane(BP)effect is incorporated into the augmented virtual internal bond(AVIB)constitutive relation through BP tensor.Comparing the BP-embedded AVI... To effectively simulate the fracture propagation in shale,the bedding plane(BP)effect is incorporated into the augmented virtual internal bond(AVIB)constitutive relation through BP tensor.Comparing the BP-embedded AVIB with the theory of transverse isotropy,it is found the approach can represent the anisotropic properties induced by parallel BPs.Through the simulation example,it is found that this method can simulate the stiffness anisotropy of shale and can represent the effect of BPs on hydraulic fracture propagation direction.Compared with the BP-embedded virtual internal bond(VIB),this method can account for the various Poisson’s ratio.It provides a feasible approach to simulate the fracture propagation in shale. 展开更多
关键词 SHALE Bedding plane Constitutive model Hydraulic fracture Augmented virtual internal bond
在线阅读 下载PDF
Quality index of bedded and joint-bearing rock mass and its applications
9
作者 姜福兴 秦忠诚 蒋国安 《Journal of Coal Science & Engineering(China)》 2002年第2期12-16,共5页
Based on the theory of Fuzzy Mathematics and Expert System, this paper presents the quantitative expression method of bedded and joint bearing rock mass quality "Stratum Quality Index"(SQI for short), and al... Based on the theory of Fuzzy Mathematics and Expert System, this paper presents the quantitative expression method of bedded and joint bearing rock mass quality "Stratum Quality Index"(SQI for short), and also introduces the successful application of the method in estimating stratum movement parameters. 展开更多
关键词 ground control bedding and joint bearing rock mass quality index of stratum
在线阅读 下载PDF
ZBED2通过糖酵解代谢诱导肝细胞癌中PD-L1表达促进免疫逃逸的机制研究 被引量:2
10
作者 黄金石 丁亚亭 曹建中 《中国免疫学杂志》 北大核心 2025年第2期367-373,共7页
目的:探讨锌指BED结构域含蛋白2(ZBED2)通过糖酵解通路对肝细胞癌(HCC)免疫逃逸的影响及潜在机制。方法:生物信息学数据库分析ZBED2在HCC组织中的表达情况及二者的结合位点,分析ZBED2调控的通路,以及ZBED2与糖酵解基因的相关性。qPCR和W... 目的:探讨锌指BED结构域含蛋白2(ZBED2)通过糖酵解通路对肝细胞癌(HCC)免疫逃逸的影响及潜在机制。方法:生物信息学数据库分析ZBED2在HCC组织中的表达情况及二者的结合位点,分析ZBED2调控的通路,以及ZBED2与糖酵解基因的相关性。qPCR和Western blot检测ZBED2及程序性细胞死亡配体1(PD-L1)在HCC细胞中的表达,MTT检测细胞活力,细胞毒性实验检测CD8+T细胞毒性,ELISA检测细胞因子表达;细胞外流量分析仪检测胞外酸化率(ECAR)和耗氧率(OCR),qPCR检测糖酵解相关基因表达,试剂盒检测糖酵解指标,免疫组织化学染色检测肿瘤组织中CD8^(+)T细胞表达。结果:ZBED2在HCC中表达上调,过表达ZBED2可促进PD-L1表达,抑制CD8^(+)T细胞对HCC细胞的毒性。过表达ZBED2通过激活糖酵解通路抑制HCC中CD8^(+)T细胞活性,进一步添加糖酵解抑制剂2-脱氧-D-葡萄糖(2-DG)减弱了以上结果。体内实验发现,敲低ZBED2可抑制小鼠肿瘤生长及PD-L1表达,促进体内CD8+T细胞浸润。结论:ZBED2通过糖酵解代谢诱导HCC中PDL1表达,促进免疫逃逸。 展开更多
关键词 锌指BED结构域含蛋白2 糖酵解 肝细胞癌 免疫逃逸
暂未订购
Super-high bed sintering for iron ores:variation and optimization of bed resistance 被引量:1
11
作者 Liang-ping Xu Lin Xiong +4 位作者 Hui-bo Liu Xi-duan Yang Ai-xiang Mao Pei-dun Chen Guang-hui Li 《Journal of Iron and Steel Research International》 2025年第1期40-51,共12页
As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and com... As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly. 展开更多
关键词 Super-high bed sintering Bed resistance Permeability PRODUCTIVITY Wet zone Combustion zone
原文传递
Gas leakage mechanism in bedded salt rock storage cavern considering damaged interface 被引量:4
12
作者 Jun Xiong Xiaolan Huang Hongling Ma 《Petroleum》 2015年第4期366-372,共7页
During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In thi... During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In this paper,damaged interfaces are considered as main potential leakage path:firstly in meso-level,gas flow rule along the interface is analyzed and the calculation of equivalent permeability is discussed.Then based on porous media seepage theory,gas leakage simulation model including salt rock,cavity interlayers and interface is built.With this strategy,it is possible to overcome the disadvantage of simulation burden with porous-fractured double medium.It also can provide the details of gas flowing along the damaged zones.Finally this proposal is applied to the salt cavern in Qianjian mines(East China).Under different operation pressures,gas distributions around two adjacent cavities are simulated;the evolvement of gas in the interlayers and salt rock is compared.From the results it is demonstrated that the domain of creep damage area has great influence on leakage range.And also the leakage in the interface will accelerate the development of leakage in salt rock.It is concluded that compared with observations,this new strategy provides closer answers.The simulation result proves its validity for the design and reasonable control of operating pressure and tightness evaluation of group bedded salt rock storage caverns. 展开更多
关键词 bedded salt rock Gas leakage Equivalent permeability Numerical simulation
原文传递
Multifactorial impacts of B-doping on Fe_(81)Ga_(19) alloys prepared by laser-beam powder bed fusion:Microstructure,magnetostriction,and osteogenesis 被引量:1
13
作者 Chengde Gao Liyuan Wang +2 位作者 Youwen Deng Shuping Peng Cijun Shuai 《Journal of Materials Science & Technology》 2025年第2期14-26,共13页
Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit fr... Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications. 展开更多
关键词 Fe-Ga alloys Laser-beam powder bed fusion Boron doping MAGNETOSTRICTION CYTOCOMPATIBILITY
原文传递
Anisotropy Evolution of Tensile Properties in Laser Powder Bed Fusion-Fabricated Inconel 625 Alloy at High Temperature 被引量:1
14
作者 Jiaqing Liu Libo Zhou +5 位作者 Zeai Peng Boyi Chen Yijie Tan Jian Chen Weiying Huang Cong Li 《Acta Metallurgica Sinica(English Letters)》 2025年第4期555-569,共15页
This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature... This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains. 展开更多
关键词 Laser powder bed fusion Inconel 625 alloy Anisotropy evolution High temperature
原文传递
Enhanced 3D printing and crack control in melt-grown eutectic ceramic composites with high-entropy alloy doping 被引量:1
15
作者 Zhonglin Shen Haijun Su +10 位作者 Minghui Yu Yinuo Guo Yuan Liu Hao Jiang Xiang Li Dong Dong Peixin Yang Jiatong Yao Min Guo Zhuo Zhang Wei Ren 《Journal of Materials Science & Technology》 2025年第6期64-78,共15页
As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancin... As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing. 展开更多
关键词 Laser powder bed fusion Eutectic ceramic composite High entropy alloy doping
原文传递
Enhanced corrosion fatigue strength of additively manufactured graded porous scaffold-coated Ti-6Al-7Nb alloy 被引量:1
16
作者 Hongwei Yang Yong Han 《Journal of Materials Science & Technology》 2025年第9期192-206,共15页
Current modifications of Ti-based materials with porous scaffolds for achieving biological fixation often decrease corrosion fatigue strength(σ_(cf))of the resultant implants,thereby shortening their service lifes-pa... Current modifications of Ti-based materials with porous scaffolds for achieving biological fixation often decrease corrosion fatigue strength(σ_(cf))of the resultant implants,thereby shortening their service lifes-pan.To resolve this issue,in the present,a step-wise graded porous Ti-6Al-7Nb scaffold was additively manufactured on optimally surface mechanical attrition treated(SMATed)Ti-6Al-7Nb(specifically de-noted as S-Ti6Al7Nb)using laser powder bed fusion(PBF)technology.The microstructure,bond strength,residual stress distribution,and corrosion fatigue behavior of porous scaffolds modified S-Ti6Al7Nb were investigated and compared with those of mechanically polished Ti-6Al-7Nb(P-Ti6Al7Nb),S-Ti6Al7Nb,and porous scaffolds modified P-Ti6Al7Nb.Results showed that corrosion fatigue of porous scaffolds modi-fied Ti-6Al-7Nb was propagation controlled.Moreover,the crack propagation behavior in the PBF scaf-fold’s fusion zone(FZ)and heat-affected zone(HAZ),exhibiting insensitivity to the microstructural con-figurations characterized by columnar prior-βgrain(PBG)boundaries and acicularα''martensites,cou-pled with the PBF-induced residual tensile stresses in these regions,resulted in a considerable decrease inσ_(cf) for porous scaffolds modified P-Ti6Al7Nb compared to P-Ti6Al7Nb.In contrast,step-wise graded porous scaffold-modified S-Ti6Al7Nb demonstrated an improvedσ_(cf) which was even higher than that of P-Ti6Al7Nb.Such an advancement in corrosion fatigue strength is primarily attributed to the presence of residual compressive stresses within the underlying S-Ti6Al7Nb substrate,extending beyond FZ and HAZ.These stresses increased the crack propagation threshold,leading to crack deflection/branching and increased crack-path tortuosity,thereby synergistically markedly enhancing the crack propagation resis-tance of porous scaffolds modified S-Ti6Al7Nb. 展开更多
关键词 Ti-6Al-7Nb alloy Powder bed fusion Graded porous scaffold Surface mechanical attrition treatment Corrosion fatigue
原文传递
A novel solution treatment and aging for powder bed fusion-laser beam Ti-6Al-2Sn-4Zr-6Mo alloy:Microstructural and mechanical characterization
17
作者 Gianluca Pirro Alessandra Martucci +2 位作者 Alessandro Morri Mariangela Lombardi Lorella Ceschini 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期414-424,共11页
Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applicati... Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms. 展开更多
关键词 powder bed fusion-laser beam titanium alloys heat treatments mechanical properties fractographic analysis
在线阅读 下载PDF
Hot Isostatic Pressing for Enhancing Mechanical Properties of Mo Alloys Prepared by Laser Powder Bed Fusion
18
作者 Liang Xunwen Fu Zhongxue +3 位作者 Zhang Shiming Che Yusi Cheng Pengming Wang Pei 《稀有金属材料与工程》 北大核心 2025年第3期587-592,共6页
To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.... To enhance the mechanical properties of Mo alloys prepared through laser powder bed fusion(LPBF),a hot isostatic pressing(HIP)treatment was used.Results show that following HIP treatment,the porosity decreases from 0.27%to 0.22%,enabling the elements Mo and Ti to diffuse fully and to distribute more uniformly,and to forming a substantial number of low-angle grain boundaries.The tensile strength soars from 286±32 MPa to 598±22 MPa,while the elongation increases from 0.08%±0.02%to 0.18%±0.02%,without notable alterations in grain morphology during the tensile deformation.HIP treatment eliminates the molten pool boundaries,which are the primary source for premature failure in LPBFed Mo alloys.Consequently,HIP treatment emerges as a novel and effective approach for strengthening the mechanical properties of LPBFed Mo alloys,offering a fresh perspective on producing high-performance Mo-based alloys. 展开更多
关键词 Mo alloys hot isostatic pressing laser powder bed fusion mechanical properties
原文传递
Inherent Strain Modeling of Residual Stress and Deformation for Laser Powder Bed Fused Artificial Knee Implants Under Different Building Schemes
19
作者 Li Chenchen Ren Xuepeng +2 位作者 Pan Laitao Shen Falei Fang Xiaoying 《稀有金属材料与工程》 北大核心 2025年第6期1417-1425,共9页
Through a modified inherent strain model based on the minimum residual stress and deformation,three building schemes with different building postures and support structures were evaluated by finite element analysis.Re... Through a modified inherent strain model based on the minimum residual stress and deformation,three building schemes with different building postures and support structures were evaluated by finite element analysis.Results demonstrate that according to the principle of reducing the overall height of the building and reducing the support structure with a large tilt angle from the building direction,the residual stress and deformation can be effectively reduced by proper design of building posture and support before laser powder bed melting.Moreover,without the data of thermophysical property variation of Ti-6Al-4V artificial knee implants with temperature,predicting the residual stress and deformation with acceptable accuracy and reduced time cost can be achieved by the inherent strain model. 展开更多
关键词 residual stress inherent strain method titanium alloy laser powder bed fusion additive manufacturing
原文传递
Impacts of bed roughness and orientation on hydraulic jump:A review
20
作者 Nishank Agrawal Ellora Padhi 《Water Science and Engineering》 2025年第1期90-101,共12页
Hydraulic jumps are a prevalent phenomenon in flows through spillways,chutes,and sluice gates.As hydraulic jumps exhibit substantial kinetic energy,the downstream of a hydraulic structure is prone to scour.To mitigate... Hydraulic jumps are a prevalent phenomenon in flows through spillways,chutes,and sluice gates.As hydraulic jumps exhibit substantial kinetic energy,the downstream of a hydraulic structure is prone to scour.To mitigate downstream scour and enhance energy dissipation,hydraulic jumps are often directed into stilling basins with various bed configurations,including horizontal,sloping,rough,and their combinations.This review compiles numerous analytical and experimental studies on hydraulic jumps under various bed conditions.The effect of bed roughness on sequent depth ratio,roller and jump lengths,shear stress,and energy dissipation is critically reviewed.The impacts of roughness height,flow Froude number,and bed angle on jump characteristics are discussed,substantiated by comparative analyses for distinct roughness heights.The results indicate that bed roughness intensifies shear stress,resulting in augmented energy dissipation and reductions in jump length and sequent depth.Additionally,the analytical and empirical equations proposed by researchers for different jump scenarios are discussed,and their applicability under various conditions is summarized.Finally,it suggests considering the scale effect in future research to refine the comprehension of jump stability over adverse slopes. 展开更多
关键词 Rough sloping bed Sequent depth Roller length Bed shear stress Energy dissipation
在线阅读 下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部