This paper aims to explore innovative bedding designs within the artistic home concept by studying the paintings of Mark Rothko,focusing on the application of his color and form.Rothko’s Abstract Expressionism style ...This paper aims to explore innovative bedding designs within the artistic home concept by studying the paintings of Mark Rothko,focusing on the application of his color and form.Rothko’s Abstract Expressionism style and his unique approach to color usage provide a rich source of inspiration for modern bedding design.The study begins with an analysis of the historical background and developmental stages of Rothko’s painting style,clarifying the core values of his art and the formative characteristics and color usage across different periods.Subsequently,the paper proposes four bedding design schemes,themed around the four seasons-Spring,Summer,Autumn,and Winter.Each scheme attempts to translate the visual elements and emotional ambiance of a specific Rothko work into the color and pattern of bedding design.By utilizing modern design software,the color blocks,lines,and textures from the art are meticulously replicated and adjusted according to the color atmosphere and design needs of each season,ensuring each bedding set possesses a unique artistic aesthetic and practical value.This interdisciplinary application not only enhances the artistic atmosphere of home environments but also provides new perspectives and creative spaces for modern home design,showcasing the perfect integration of art and everyday life.This research is expected to bring fresh inspiration to the field of artistic home design,promote further integration of art and design,and provide more personalized and artistically valuable home options for consumers who appreciate Rothko’s works.展开更多
This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which ca...This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.展开更多
Poly Laevo Lactic Acid (PLLA), in spite of being an excellent bioplastic, has exorbitantly high market price due to the high cost of raw material (lactose, glucose, sucrose). Hence, its manufacture is being attempted ...Poly Laevo Lactic Acid (PLLA), in spite of being an excellent bioplastic, has exorbitantly high market price due to the high cost of raw material (lactose, glucose, sucrose). Hence, its manufacture is being attempted starting from waste effluents such as cheese whey and molasses. Earlier studies on the same in fluidized bed and semifluidized bed biofilm reactors yielded encouraging results. The present study therefore involves design and analysis of inverse fluidized bed biofilm reactors for lactic acid synthesis. The performance features of the bioreactor have been studied both mathematically as well as experimentally. The inverse fluidized bed biofilm reactor has been found to provide more than 75% conversion of sucrose/lactose even at high capacities (high feed flow rates) exceeding 56,000 L/hr, within a reasonably low reactor volume. The fractional substrate conversion increases, though sluggishly, with increase in feed flow rate due to bed expansion and also with increase in cell mass concentration in biofilm due to enhancement in intrinsic rate of bioconversion. The inverse fluidized bed biofilm reactor of proposed design could be safely recommended for the commercial synthesis of polymer grade lactic acid from waste effluents such as cheese whey and molasses. The low operating cost of the bioreactor (due to downflow mode of operation) enhances the economy of the process. This would also help in significantly lowering the market price of the green plastic (PLLA) and shall promote its large scale manufacture and utilisation.展开更多
Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integr...Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integrated process configuration consisting of three each single separation units, membrane, pressure swing absorption, and cryogenics. A superstructure model was established including all possible network configurations which were solved by MINLP. The design strategy optimized the separation unit configuration and operating conditions to satisfy the target of minimum total annual process cost. An example was presented for the separation of CH4/N2 mixtures in coal bed methane (CBM) treatment. The key operation parameters were also studied and they showed the influence to process configurations.展开更多
From time immemorial, human beings have used pigments made from vegetables, fruits, superior plants, animal tissues and cereals. One of the greatest sources of pigments is the bacterium that, with the use of the moder...From time immemorial, human beings have used pigments made from vegetables, fruits, superior plants, animal tissues and cereals. One of the greatest sources of pigments is the bacterium that, with the use of the modern technology, has increased the production of metabolites of interest. The microbiological production of carotenoids has not been optimized to obtain pigment production quantities of pigments and carotenoids recovery that lower production costs. The aim of this work was to design a Zeaxanthin production process with Flavobacterium sp. immobilized cells in a fluidized bed bioreactor. An optimum culture medium for Zeaxanthin production in stirred flasks (2.46 g·L–1) was obtained. Furthermore, optimum process conditions for a maximum yield of Zeaxanthin production, by fluidized bed bioreactor, were established. A statistical analysis showed that the most significant factors were air flow, pH and NaCl concentration (4.5 g·L–1). In this study a maximum Zeaxanthin production of 3.8 g·L–1 was reached. The highest reported yield to date was 0.329 g·L–1.展开更多
Over the last 10 years there have been significant developments and improvements in the understanding of railway track bed in the UK and its relationship and impact on track quality,ballast life and maintenance follow...Over the last 10 years there have been significant developments and improvements in the understanding of railway track bed in the UK and its relationship and impact on track quality,ballast life and maintenance following track renewals.This paper aims to describe the process adopted by Network Rail for track bed investigation and design which offers Network Rail optimum design solutions and value for money from an investigation and construction perspective,balancing design with possession availability to maximise construction output.It also describes innovative investigation and construction techniques that have been developed over the last 5 years maximising the use of rail mounted asset condition data collection systems which run at line speed,allowing targeted investigations and in some case removing the requirements for physical site investigation.It also allows Network Rail to predict sections of track bed which may be affected by line speed increases which would cause the track bed to fail prematurely or,retain its ability to maintain good track geometry post line speed increase.These problems can manifest themselves as stiffness related problems such as critical velocity issues(surface wave velocity,Rayleigh Wave velocity)or,sub-grade erosion resulting in high rates of deterioration in the vertical track geometry.The paper also describes the development and installation process for Enhanced Axial Micropiles to address stiffness related track bed problems whilst leaving the track in-situ a technique which is new to the UK railways.展开更多
Constructed wetland was first introduced into the United Kingdom in the middle of 1980s,following a visit by a group of scientist to Western Germany.In the past 2 decades,the applications of constructed wetlands in th...Constructed wetland was first introduced into the United Kingdom in the middle of 1980s,following a visit by a group of scientist to Western Germany.In the past 2 decades,the applications of constructed wetlands in this country have expanded substantially,due to the demand for green technologies and rising cost of fossil fuel energies.This paper reported a statistical investigation of the performances of 78 horizontal flow wetlands,representatives of such system in the United Kingdom.Alternative design equations,based on organic matter removal efficiency,have been developed from Monod kinetics,and the accuracy and reliability of current and alternative design approaches have been examined.展开更多
文摘This paper aims to explore innovative bedding designs within the artistic home concept by studying the paintings of Mark Rothko,focusing on the application of his color and form.Rothko’s Abstract Expressionism style and his unique approach to color usage provide a rich source of inspiration for modern bedding design.The study begins with an analysis of the historical background and developmental stages of Rothko’s painting style,clarifying the core values of his art and the formative characteristics and color usage across different periods.Subsequently,the paper proposes four bedding design schemes,themed around the four seasons-Spring,Summer,Autumn,and Winter.Each scheme attempts to translate the visual elements and emotional ambiance of a specific Rothko work into the color and pattern of bedding design.By utilizing modern design software,the color blocks,lines,and textures from the art are meticulously replicated and adjusted according to the color atmosphere and design needs of each season,ensuring each bedding set possesses a unique artistic aesthetic and practical value.This interdisciplinary application not only enhances the artistic atmosphere of home environments but also provides new perspectives and creative spaces for modern home design,showcasing the perfect integration of art and everyday life.This research is expected to bring fresh inspiration to the field of artistic home design,promote further integration of art and design,and provide more personalized and artistically valuable home options for consumers who appreciate Rothko’s works.
基金supported by the Chinese Academy of Sciences TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Thorium uranium fuel cycle characteristics and key problem research Project(No.QYZDY-SSW-JSC016)
文摘This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.
文摘Poly Laevo Lactic Acid (PLLA), in spite of being an excellent bioplastic, has exorbitantly high market price due to the high cost of raw material (lactose, glucose, sucrose). Hence, its manufacture is being attempted starting from waste effluents such as cheese whey and molasses. Earlier studies on the same in fluidized bed and semifluidized bed biofilm reactors yielded encouraging results. The present study therefore involves design and analysis of inverse fluidized bed biofilm reactors for lactic acid synthesis. The performance features of the bioreactor have been studied both mathematically as well as experimentally. The inverse fluidized bed biofilm reactor has been found to provide more than 75% conversion of sucrose/lactose even at high capacities (high feed flow rates) exceeding 56,000 L/hr, within a reasonably low reactor volume. The fractional substrate conversion increases, though sluggishly, with increase in feed flow rate due to bed expansion and also with increase in cell mass concentration in biofilm due to enhancement in intrinsic rate of bioconversion. The inverse fluidized bed biofilm reactor of proposed design could be safely recommended for the commercial synthesis of polymer grade lactic acid from waste effluents such as cheese whey and molasses. The low operating cost of the bioreactor (due to downflow mode of operation) enhances the economy of the process. This would also help in significantly lowering the market price of the green plastic (PLLA) and shall promote its large scale manufacture and utilisation.
基金supported by the National Natural Science Foundation of China(Grant No.51176051)the PetroChina Innovation Foundation(2012D- 5006-0210)the Colleges and Universities High-level Talents Program of Guangdong
文摘Coal bed methane (CBM) has a huge potential to be purified to relieve the shortage of natural gas meanwhile to weaken the greenhouse effect. This paper proposed an optimal design strategy for CBM to obtain an integrated process configuration consisting of three each single separation units, membrane, pressure swing absorption, and cryogenics. A superstructure model was established including all possible network configurations which were solved by MINLP. The design strategy optimized the separation unit configuration and operating conditions to satisfy the target of minimum total annual process cost. An example was presented for the separation of CH4/N2 mixtures in coal bed methane (CBM) treatment. The key operation parameters were also studied and they showed the influence to process configurations.
文摘From time immemorial, human beings have used pigments made from vegetables, fruits, superior plants, animal tissues and cereals. One of the greatest sources of pigments is the bacterium that, with the use of the modern technology, has increased the production of metabolites of interest. The microbiological production of carotenoids has not been optimized to obtain pigment production quantities of pigments and carotenoids recovery that lower production costs. The aim of this work was to design a Zeaxanthin production process with Flavobacterium sp. immobilized cells in a fluidized bed bioreactor. An optimum culture medium for Zeaxanthin production in stirred flasks (2.46 g·L–1) was obtained. Furthermore, optimum process conditions for a maximum yield of Zeaxanthin production, by fluidized bed bioreactor, were established. A statistical analysis showed that the most significant factors were air flow, pH and NaCl concentration (4.5 g·L–1). In this study a maximum Zeaxanthin production of 3.8 g·L–1 was reached. The highest reported yield to date was 0.329 g·L–1.
文摘Over the last 10 years there have been significant developments and improvements in the understanding of railway track bed in the UK and its relationship and impact on track quality,ballast life and maintenance following track renewals.This paper aims to describe the process adopted by Network Rail for track bed investigation and design which offers Network Rail optimum design solutions and value for money from an investigation and construction perspective,balancing design with possession availability to maximise construction output.It also describes innovative investigation and construction techniques that have been developed over the last 5 years maximising the use of rail mounted asset condition data collection systems which run at line speed,allowing targeted investigations and in some case removing the requirements for physical site investigation.It also allows Network Rail to predict sections of track bed which may be affected by line speed increases which would cause the track bed to fail prematurely or,retain its ability to maintain good track geometry post line speed increase.These problems can manifest themselves as stiffness related problems such as critical velocity issues(surface wave velocity,Rayleigh Wave velocity)or,sub-grade erosion resulting in high rates of deterioration in the vertical track geometry.The paper also describes the development and installation process for Enhanced Axial Micropiles to address stiffness related track bed problems whilst leaving the track in-situ a technique which is new to the UK railways.
文摘Constructed wetland was first introduced into the United Kingdom in the middle of 1980s,following a visit by a group of scientist to Western Germany.In the past 2 decades,the applications of constructed wetlands in this country have expanded substantially,due to the demand for green technologies and rising cost of fossil fuel energies.This paper reported a statistical investigation of the performances of 78 horizontal flow wetlands,representatives of such system in the United Kingdom.Alternative design equations,based on organic matter removal efficiency,have been developed from Monod kinetics,and the accuracy and reliability of current and alternative design approaches have been examined.