In this paper, the stress-strain bys torests at various temperatures was investigated experimentally for Cu-Zn-Al polycrystalline shape memory alloys (SMAs). Numerical simulations of the pseudoelastic hysteresis were ...In this paper, the stress-strain bys torests at various temperatures was investigated experimentally for Cu-Zn-Al polycrystalline shape memory alloys (SMAs). Numerical simulations of the pseudoelastic hysteresis were performed based on a model, which had been proposed by the authors. As observed in the experiments, the shapes of the outer loops of the hysteresis varied strongly from specimen to specimen, which have the same chemical composition but different heat-treatment. Rather complicated inner hysteretic curves were obtained at testing temperatures higher than Af. The numerical simulations of the stress-strain hysteresis and the inner hysteretic curves agreed quite well with the experimental results.展开更多
文摘In this paper, the stress-strain bys torests at various temperatures was investigated experimentally for Cu-Zn-Al polycrystalline shape memory alloys (SMAs). Numerical simulations of the pseudoelastic hysteresis were performed based on a model, which had been proposed by the authors. As observed in the experiments, the shapes of the outer loops of the hysteresis varied strongly from specimen to specimen, which have the same chemical composition but different heat-treatment. Rather complicated inner hysteretic curves were obtained at testing temperatures higher than Af. The numerical simulations of the stress-strain hysteresis and the inner hysteretic curves agreed quite well with the experimental results.