Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the informa...Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well.展开更多
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the p...Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.展开更多
Taking the excellent energy absorption performances of cellular structures into consideration,three beam-column steel joints are proposed to analyze the effect of cellular metallic fillers on impact mechanical respons...Taking the excellent energy absorption performances of cellular structures into consideration,three beam-column steel joints are proposed to analyze the effect of cellular metallic fillers on impact mechanical responses of beam-column joints.Based on the existing experimental results,the finite element models of the associated joints are established by using finite element method software.The deformation mode,the bearing capacity and energy absorption performance of various joints subjected to impact loadings with the loading velocities from 10 to 100 m/s are analyzed,respectively.The dynamic responses of cellular metal-filled beamcolumn joints are quantitatively analyzed by means of displacements of central region,nominal impacting stress and energy absorption efficiency.The results can be concluded that the filling of cellular filler weakens the stress concentration on joints,alleviates the occurrence of tearing in connection region among column and beam,and reduces the displacement caused by impact loading.Energy absorption efficiency of filled joints subjected to impact loading increases as the impacting velocity increases,and the cellular metallic filler improves their impact resistance of beam-column joints.The energy absorption efficiency of fully filled joints is superior to that of others.This study can provide a reference for steel structural design and post-disaster repair under extreme working conditions.展开更多
Joints between sintered silicon carbide (SSiC) were produced using a polysiloxane silicon resin YR3370 (GE Toshiba Silicones) as joining material. Samples were heat treated in a 99.99% nitrogen flux at temperature...Joints between sintered silicon carbide (SSiC) were produced using a polysiloxane silicon resin YR3370 (GE Toshiba Silicones) as joining material. Samples were heat treated in a 99.99% nitrogen flux at temperatures ranging from 1 100 ℃ to 1 300 ℃. Three point bending strength of the joint reached the maximum of 179 MPa as joined at 1 200℃. The joining layer is continuous, homogeneous and densified and has a thickness of 2 μm -5μm. The joining mechanism is that the amorphous silicon oxycarbide (SixOyCz) ceramic pyrolyzed from silicon resin YR3370 acts as an inorganic adhesive to SSiC substrate, which means the formation of the continuous Si-C bond structure between SixOyCz structure and SSiC substrate. Life prediction of the ceramic joint can be realized through the measurement of the critical time of the joint after the cyclic loading test.展开更多
Silicon nitride composite is joined to itself by heating interlayer of Y2 O3 -AL2O3 -SiO2 mixtures above their liquidus temperatures in flowing nitrogen. The joined specimens are tested in four point flexure from room...Silicon nitride composite is joined to itself by heating interlayer of Y2 O3 -AL2O3 -SiO2 mixtures above their liquidus temperatures in flowing nitrogen. The joined specimens are tested in four point flexure from room temperature to 1373 K. The interface microstruclure and fractured surfaces after testing are observed and analyzed by SEM, EPMA and XRD respectively. The results show that F2 O3 -A12 O3 -SiO2 glass reacts with Si3 N4 at interface, forming the Si3 N4/Si2 N2 O( Y-AlrSi-O-N glass/ Y-Al- Si-O glass gradient interface. With the increase of bonding temperature and holding time, the joint strength first increases, reaching a peak, and then decreases . According to interfacial analyses , the bonding strength depends on joint thickness .展开更多
Layered double hydroxide(LDH)conversion coatings loaded with corrosion inhibitors were suggested for the surface treatment of the aluminum alloy 2024-T3,prior to friction spot joining with carbon-fiber reinforced poly...Layered double hydroxide(LDH)conversion coatings loaded with corrosion inhibitors were suggested for the surface treatment of the aluminum alloy 2024-T3,prior to friction spot joining with carbon-fiber reinforced polyphenylene sulfide(AA2024-T3/CF-PPS).Vanadate was used as a model corrosion inhibitor.Lap shear testing method revealed an increase of approx.20%of the joint’s adhesion performance when treated with LDH and before exposure to salt spray.The evaluation of the joints after exposure to salt spray demonstrated a significant difference in the corrosion behavior of the joints when the AA2024-T3 is treated with LDH loaded with nitrate and vanadate species.The LDH intercalated with nitrate revealed a clear improvement in the mechanical and corrosion resistance performance of the joints,even after 6 weeks of salt spray.However,the LDH intercalated with vanadate failed in providing protection against corrosion as well as preserving the mechanical properties of the joints.The effect of the galvanic corrosion was further investigated by zero resistance ammeter(ZRA)measurements as well as localized scanning vibrating electrode technique(SVET).展开更多
A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ...A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
The investigation on the aerodynamic characteristics of the high-attitude long-endurance (HALE) Diamond Joined-Wing configuration unmanned aerial vehicle ( UAV) was carried out by the theoretical analysis method and n...The investigation on the aerodynamic characteristics of the high-attitude long-endurance (HALE) Diamond Joined-Wing configuration unmanned aerial vehicle ( UAV) was carried out by the theoretical analysis method and numerical simulation. Research indicates that as the wing of the UAV is composed of the front wing and the after wing, the after wing has the ability to transmit the front wing's boundary layer to the after wing root which can inhibit the front wing's flow separation. Although the front wing was affected by the retardation of the after wing, the aerodynamic performance of the front wing was better than that of alone front wing in most cases. The after wing was also affected by the wake and downwash of the front wing, and its aerodynamic performance was greatly decreased. The characteristic curve of the pitching moment of the UAV had nonlinear characteristics. The flow field structure of the after wing changed by the front wing wake direct sweep and flow separation at the after wing root were the main reasons that non-linear ′rise′phenomenon occurred in two segments ( α = 0° and α = 8° ) of the characteristic curve of pitching moment. Moreover, coupling of the flow separation characteristic of the front wing and the after wing resulted in the pitching moment ′pitchup′ phenomenon. The lateral-directional static stability of the flat layout was weak. The HALE Diamond Joined-Wing configuration UAV ' s aerodynamic performance can be improved and the problems in engineering applications can be effectively alleviated by adjusting the overall layout parameters.展开更多
The quantum search on the graph is a very important topic.In this work,we develop a theoretic method on searching of single vertex on the graph[Phys.Rev.Lett.114110503(2015)],and systematically study the search of man...The quantum search on the graph is a very important topic.In this work,we develop a theoretic method on searching of single vertex on the graph[Phys.Rev.Lett.114110503(2015)],and systematically study the search of many vertices on one low-connectivity graph,the joined complete graph.Our results reveal that,with the optimal jumping rate obtained from the theoretical method,we can find such target vertices at the time O(√N),where N is the number of total vertices.Therefore,the search of many vertices on the joined complete graph possessing quantum advantage has been achieved.展开更多
On Aug. 25, China National Offshore Oil Corporation (CNOOC) and WorleyParsons, a world famous project construction company, signed an agreement for jointly setting up Huizhou Refinery Project Construction Team in Be...On Aug. 25, China National Offshore Oil Corporation (CNOOC) and WorleyParsons, a world famous project construction company, signed an agreement for jointly setting up Huizhou Refinery Project Construction Team in Beijing KEMPINSKI Hotel. Zheng Changbo, assistant president of CNOOC, Dong Xiaoli, general manager of Huizhou Refinery Project Team, and Lynn C. Fister, deputy general manager of WorleyParsons attended the signing ceremony.展开更多
The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, redu...The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, reduced wetted area and parasite drag and good stability and control, which have been supported by independent analyses, design studies and wind tunnel tests. With such foreseen advantages, the present work is carried out to design joined-wing business-jet aircraft and study and investigate its advantages and benefits as compared to the current available conventional business jet of similar size, passenger and payload capacity. In particular, the work searches for a conceptual design of joined-wing configured business-jet aircraft that possesses more superior characteristics and better aerodynamic performance in terms of increased lift and reduced drag, and lighter than the conventional business jet of similar size. Another significant objective of this work is to prove that the added rigidity possessed by the joined wing configuration can contribute to weight reduction.展开更多
This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at t...This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.展开更多
Determining the crossing number of a given graph is NP-complete. The cycle of length m is denoted by Cm = v1v2…vmv1. G^((1))_(m) (m ≥ 5) is the graph obtained from Cm by adding two edges v1v3 and vlvl+2 (3 ≤ l ≤ m...Determining the crossing number of a given graph is NP-complete. The cycle of length m is denoted by Cm = v1v2…vmv1. G^((1))_(m) (m ≥ 5) is the graph obtained from Cm by adding two edges v1v3 and vlvl+2 (3 ≤ l ≤ m−2), G^((2))m (m ≥ 4) is the graph obtained from Cm by adding two edges v1v3 and v2v4. The famous Zarankiewicz’s conjecture on the crossing number of the complete bipartite graph Km,n states that cr(Km,n)=Z(m,n)=[m/2][m-1/2][n/2[n-1/2].Based on Zarankiewicz’s conjecture, a natural problem is to study the change in the crossingnumber of the graphs obtained from the complete bipartite graph by adding certain edge sets.If Zarankiewicz’s conjecture is true, this paper proves that cr(G^((1))_(m)+Kn)=Z(m,n)+2[n/2] and cr(G^((2))_(m)+Kn)=Z(m,n)+n.展开更多
Chromosomal DNA double-strand breaks(DSBs)are often generated in the genome of all living organisms.To combat DNA damage,organisms have evolved several DSB repair mechanisms,with nonhomologous end-joining(NHEJ)and hom...Chromosomal DNA double-strand breaks(DSBs)are often generated in the genome of all living organisms.To combat DNA damage,organisms have evolved several DSB repair mechanisms,with nonhomologous end-joining(NHEJ)and homologous recombination(HR)being the two most prominent.Although two major pathways have been extensively studied in Arabidopsis,rice and other mammals,the exact functions and differences between the two DSB repair pathways in maize still remain less well understood.Here,we characterized mre11a and rad50,mutants of HR pathway patterns,which showed drastic degradation of the typically persistent embryo and endosperm during kernel development.Loss of MRE11 or RAD50 function led to chromosomal fragments and chromosomal bridges in anaphase.While we also reported that the NHEJ pathway patterns,KU70 and KU80 are associated with developmental growth and genome stability.ku70 and ku80 both displayed an obvious dwarf phenotype.Cytological analysis of the mutants revealed extensive chromosome fragmentation in metaphase and subsequent stages.Loss of KU70/80 function upregulated the expression of genes involved in cell cycle progression and nuclear division.These results provide insights into how NHEJ and HR are mechanistically executed during different plant developmental periods and highlight a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in maize.展开更多
The development and application of large Die⁃Casting Al Alloy(DCAA)parts and Thermo⁃Formed Steel Sheets(TFSS)in Body⁃in⁃White(BIW)have created higher demands for the joining technology of high⁃strength steel/Al dissim...The development and application of large Die⁃Casting Al Alloy(DCAA)parts and Thermo⁃Formed Steel Sheets(TFSS)in Body⁃in⁃White(BIW)have created higher demands for the joining technology of high⁃strength steel/Al dissimilar materials.As an emerging technology,Flush Self⁃Piercing Riveting(FSPR)is still in the experimental phase and undergoing small batch equipment verification.This paper focuses on the joining methods for DCAA and TFSS in BIW,investigating the joining mechanisms,technical features,and forming principles of FSPR for steel/Al dissimilar materials with two⁃layer or three⁃layer plate combinations.Considering the TL4225/C611/CR5 sheet combination as a subject,the forming mechanism of high⁃quality joints was studied,and a physical and mathematical model was established to depict the relationship between the filling amount of the arc⁃gap and die dimensions,as well as the extrusion amount.This model effectively illustrates the relationship between the filling amount of the flowing metal in the arc⁃gap and critical parameters,such as die dimensions and feeding amounts.By simplifying the process of selecting joining parameters,it significantly reduces both the time and experimental workload associated with parameter selection.This provides a technical foundation for the application of DAAA and TFSS parts in BIW,enabling the rapid choice of appropriate joining parameters to meet the requirements for obtaining high⁃quality joints.The model can be effectively utilized to investigate the relationships between key parameters,including arc⁃gap radius,plate thickness,rivet arc radius,nail head radius,groove width,and feeding amount,while keeping other parameters constant.This approach provides a theoretical foundation for the design of Friction Stir Processing(FSP)joints and aids in the selection of optimal parameters.展开更多
文摘Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well.
文摘Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
基金the National Natural Science Foundation of China(No.11472005)the National Key Research and Development Project(No.2016YFC0701507-2)the Natural Science Foundation of Anhui Province(No.1908085ME173)。
文摘Taking the excellent energy absorption performances of cellular structures into consideration,three beam-column steel joints are proposed to analyze the effect of cellular metallic fillers on impact mechanical responses of beam-column joints.Based on the existing experimental results,the finite element models of the associated joints are established by using finite element method software.The deformation mode,the bearing capacity and energy absorption performance of various joints subjected to impact loadings with the loading velocities from 10 to 100 m/s are analyzed,respectively.The dynamic responses of cellular metal-filled beamcolumn joints are quantitatively analyzed by means of displacements of central region,nominal impacting stress and energy absorption efficiency.The results can be concluded that the filling of cellular filler weakens the stress concentration on joints,alleviates the occurrence of tearing in connection region among column and beam,and reduces the displacement caused by impact loading.Energy absorption efficiency of filled joints subjected to impact loading increases as the impacting velocity increases,and the cellular metallic filler improves their impact resistance of beam-column joints.The energy absorption efficiency of fully filled joints is superior to that of others.This study can provide a reference for steel structural design and post-disaster repair under extreme working conditions.
基金National Key Fundamental R&D Plan (2004CB217808)National Natural Science Foundation of China (20271037)
文摘Joints between sintered silicon carbide (SSiC) were produced using a polysiloxane silicon resin YR3370 (GE Toshiba Silicones) as joining material. Samples were heat treated in a 99.99% nitrogen flux at temperatures ranging from 1 100 ℃ to 1 300 ℃. Three point bending strength of the joint reached the maximum of 179 MPa as joined at 1 200℃. The joining layer is continuous, homogeneous and densified and has a thickness of 2 μm -5μm. The joining mechanism is that the amorphous silicon oxycarbide (SixOyCz) ceramic pyrolyzed from silicon resin YR3370 acts as an inorganic adhesive to SSiC substrate, which means the formation of the continuous Si-C bond structure between SixOyCz structure and SSiC substrate. Life prediction of the ceramic joint can be realized through the measurement of the critical time of the joint after the cyclic loading test.
文摘Silicon nitride composite is joined to itself by heating interlayer of Y2 O3 -AL2O3 -SiO2 mixtures above their liquidus temperatures in flowing nitrogen. The joined specimens are tested in four point flexure from room temperature to 1373 K. The interface microstruclure and fractured surfaces after testing are observed and analyzed by SEM, EPMA and XRD respectively. The results show that F2 O3 -A12 O3 -SiO2 glass reacts with Si3 N4 at interface, forming the Si3 N4/Si2 N2 O( Y-AlrSi-O-N glass/ Y-Al- Si-O glass gradient interface. With the increase of bonding temperature and holding time, the joint strength first increases, reaching a peak, and then decreases . According to interfacial analyses , the bonding strength depends on joint thickness .
基金supported by the European FP7 project“PROAIR”(No.PIAPP-GA-2013-612415)the Horizon 2020 project“MULTISURF”(Marie Sklodowska-Curie grant agreement No 645676)+3 种基金the DAAD financial support in the form of an International Travel Grant,which enabled her to attend the International Conference on Surface Modification Technologies 33(SMT-33)the support of the National Council for Scientific and Technological Development(CNPq Brazil,Process 200694/2015-4)the financial support from the Austrian aviation program“TAKE-OFF”from the Austrian Ministry for Climate Action,Environment,Energy,Mobility,Innovation and Technology,BMK。
文摘Layered double hydroxide(LDH)conversion coatings loaded with corrosion inhibitors were suggested for the surface treatment of the aluminum alloy 2024-T3,prior to friction spot joining with carbon-fiber reinforced polyphenylene sulfide(AA2024-T3/CF-PPS).Vanadate was used as a model corrosion inhibitor.Lap shear testing method revealed an increase of approx.20%of the joint’s adhesion performance when treated with LDH and before exposure to salt spray.The evaluation of the joints after exposure to salt spray demonstrated a significant difference in the corrosion behavior of the joints when the AA2024-T3 is treated with LDH loaded with nitrate and vanadate species.The LDH intercalated with nitrate revealed a clear improvement in the mechanical and corrosion resistance performance of the joints,even after 6 weeks of salt spray.However,the LDH intercalated with vanadate failed in providing protection against corrosion as well as preserving the mechanical properties of the joints.The effect of the galvanic corrosion was further investigated by zero resistance ammeter(ZRA)measurements as well as localized scanning vibrating electrode technique(SVET).
基金financially sponsored by the US Department Energy Vehicle Technologies Office, as part of the Joining Core Programmanaged by UT-Battelle LLC for the US Department of Energy under Contract DE-AC05-00OR22725。
文摘A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
基金Sponsored by the Civil Aircraft Project(Grant No.MIE-2015-F-009)the Shaanxi Province Science and Technology Project(Grant No.2015KTCQ01-78)
文摘The investigation on the aerodynamic characteristics of the high-attitude long-endurance (HALE) Diamond Joined-Wing configuration unmanned aerial vehicle ( UAV) was carried out by the theoretical analysis method and numerical simulation. Research indicates that as the wing of the UAV is composed of the front wing and the after wing, the after wing has the ability to transmit the front wing's boundary layer to the after wing root which can inhibit the front wing's flow separation. Although the front wing was affected by the retardation of the after wing, the aerodynamic performance of the front wing was better than that of alone front wing in most cases. The after wing was also affected by the wake and downwash of the front wing, and its aerodynamic performance was greatly decreased. The characteristic curve of the pitching moment of the UAV had nonlinear characteristics. The flow field structure of the after wing changed by the front wing wake direct sweep and flow separation at the after wing root were the main reasons that non-linear ′rise′phenomenon occurred in two segments ( α = 0° and α = 8° ) of the characteristic curve of pitching moment. Moreover, coupling of the flow separation characteristic of the front wing and the after wing resulted in the pitching moment ′pitchup′ phenomenon. The lateral-directional static stability of the flat layout was weak. The HALE Diamond Joined-Wing configuration UAV ' s aerodynamic performance can be improved and the problems in engineering applications can be effectively alleviated by adjusting the overall layout parameters.
基金the National Key R&D Program of China(Grant No.2017YFA0303800)the National Natural Science Foundation of China(Grant Nos.91850205 and 11974046)。
文摘The quantum search on the graph is a very important topic.In this work,we develop a theoretic method on searching of single vertex on the graph[Phys.Rev.Lett.114110503(2015)],and systematically study the search of many vertices on one low-connectivity graph,the joined complete graph.Our results reveal that,with the optimal jumping rate obtained from the theoretical method,we can find such target vertices at the time O(√N),where N is the number of total vertices.Therefore,the search of many vertices on the joined complete graph possessing quantum advantage has been achieved.
文摘On Aug. 25, China National Offshore Oil Corporation (CNOOC) and WorleyParsons, a world famous project construction company, signed an agreement for jointly setting up Huizhou Refinery Project Construction Team in Beijing KEMPINSKI Hotel. Zheng Changbo, assistant president of CNOOC, Dong Xiaoli, general manager of Huizhou Refinery Project Team, and Lynn C. Fister, deputy general manager of WorleyParsons attended the signing ceremony.
文摘The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, reduced wetted area and parasite drag and good stability and control, which have been supported by independent analyses, design studies and wind tunnel tests. With such foreseen advantages, the present work is carried out to design joined-wing business-jet aircraft and study and investigate its advantages and benefits as compared to the current available conventional business jet of similar size, passenger and payload capacity. In particular, the work searches for a conceptual design of joined-wing configured business-jet aircraft that possesses more superior characteristics and better aerodynamic performance in terms of increased lift and reduced drag, and lighter than the conventional business jet of similar size. Another significant objective of this work is to prove that the added rigidity possessed by the joined wing configuration can contribute to weight reduction.
文摘This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.
基金Supported by Changsha Natural Science Foundation(No.kq2208001)the Key Project Funded by Hunan Provincial Department of Education(No.21A0590)。
文摘Determining the crossing number of a given graph is NP-complete. The cycle of length m is denoted by Cm = v1v2…vmv1. G^((1))_(m) (m ≥ 5) is the graph obtained from Cm by adding two edges v1v3 and vlvl+2 (3 ≤ l ≤ m−2), G^((2))m (m ≥ 4) is the graph obtained from Cm by adding two edges v1v3 and v2v4. The famous Zarankiewicz’s conjecture on the crossing number of the complete bipartite graph Km,n states that cr(Km,n)=Z(m,n)=[m/2][m-1/2][n/2[n-1/2].Based on Zarankiewicz’s conjecture, a natural problem is to study the change in the crossingnumber of the graphs obtained from the complete bipartite graph by adding certain edge sets.If Zarankiewicz’s conjecture is true, this paper proves that cr(G^((1))_(m)+Kn)=Z(m,n)+2[n/2] and cr(G^((2))_(m)+Kn)=Z(m,n)+n.
基金supported by the National Natural Science Foundation of China(32372116)to Yan He.
文摘Chromosomal DNA double-strand breaks(DSBs)are often generated in the genome of all living organisms.To combat DNA damage,organisms have evolved several DSB repair mechanisms,with nonhomologous end-joining(NHEJ)and homologous recombination(HR)being the two most prominent.Although two major pathways have been extensively studied in Arabidopsis,rice and other mammals,the exact functions and differences between the two DSB repair pathways in maize still remain less well understood.Here,we characterized mre11a and rad50,mutants of HR pathway patterns,which showed drastic degradation of the typically persistent embryo and endosperm during kernel development.Loss of MRE11 or RAD50 function led to chromosomal fragments and chromosomal bridges in anaphase.While we also reported that the NHEJ pathway patterns,KU70 and KU80 are associated with developmental growth and genome stability.ku70 and ku80 both displayed an obvious dwarf phenotype.Cytological analysis of the mutants revealed extensive chromosome fragmentation in metaphase and subsequent stages.Loss of KU70/80 function upregulated the expression of genes involved in cell cycle progression and nuclear division.These results provide insights into how NHEJ and HR are mechanistically executed during different plant developmental periods and highlight a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in maize.
文摘The development and application of large Die⁃Casting Al Alloy(DCAA)parts and Thermo⁃Formed Steel Sheets(TFSS)in Body⁃in⁃White(BIW)have created higher demands for the joining technology of high⁃strength steel/Al dissimilar materials.As an emerging technology,Flush Self⁃Piercing Riveting(FSPR)is still in the experimental phase and undergoing small batch equipment verification.This paper focuses on the joining methods for DCAA and TFSS in BIW,investigating the joining mechanisms,technical features,and forming principles of FSPR for steel/Al dissimilar materials with two⁃layer or three⁃layer plate combinations.Considering the TL4225/C611/CR5 sheet combination as a subject,the forming mechanism of high⁃quality joints was studied,and a physical and mathematical model was established to depict the relationship between the filling amount of the arc⁃gap and die dimensions,as well as the extrusion amount.This model effectively illustrates the relationship between the filling amount of the flowing metal in the arc⁃gap and critical parameters,such as die dimensions and feeding amounts.By simplifying the process of selecting joining parameters,it significantly reduces both the time and experimental workload associated with parameter selection.This provides a technical foundation for the application of DAAA and TFSS parts in BIW,enabling the rapid choice of appropriate joining parameters to meet the requirements for obtaining high⁃quality joints.The model can be effectively utilized to investigate the relationships between key parameters,including arc⁃gap radius,plate thickness,rivet arc radius,nail head radius,groove width,and feeding amount,while keeping other parameters constant.This approach provides a theoretical foundation for the design of Friction Stir Processing(FSP)joints and aids in the selection of optimal parameters.