A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation...A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence.展开更多
The ADS(accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences.The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerate...The ADS(accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences.The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles(RFQ) operating in CW mode.To test the feasibility of this physical design,a new Fortran code for RFQ beam dynamics study,which is space charge dominated,was developed.This program is based on Particle-In-Cell(PIC) technique in the time domain.Using the RFQ structure designed for the CADS project,the beam dynamics behavior is performed.The well-known simulation code TRACK is used for benchmarks.The results given by these two codes show good agreements.Numerical techniques as well as the results of beam dynamics studies are presented in this paper.展开更多
基金support from the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research,and Innovation(No.B05F650022),as well as from Chiang Mai University.
文摘A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence.
基金Supported by National Natural Science Foundation of China(11079001,91026001)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA03030100)
文摘The ADS(accelerator driven subcritical system) project was proposed by the Chinese Academy of Sciences.The initial proton beams delivered from an electron cyclotron resonance ion source can be effectively accelerated by 162.5 MHz 4.2 m long room temperature radio-frequency-quadrupoles(RFQ) operating in CW mode.To test the feasibility of this physical design,a new Fortran code for RFQ beam dynamics study,which is space charge dominated,was developed.This program is based on Particle-In-Cell(PIC) technique in the time domain.Using the RFQ structure designed for the CADS project,the beam dynamics behavior is performed.The well-known simulation code TRACK is used for benchmarks.The results given by these two codes show good agreements.Numerical techniques as well as the results of beam dynamics studies are presented in this paper.