This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strate...This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing.Specifically,we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency,both critical for surface and bulk processing applications.Given the inherent physical limitations of spatial light modulators such as spatial resolution,fill factor,and phase modulation range.We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles.We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns.The paper includes application examples across a wide range of fields,from surgery to surface structuring,cutting,bulk photo-inscription of optical functions,and additive manufacturing,highlighting the significant enhancements in processing speed and precision due to spatial beam shaping.The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods.We discuss several advancements addressing these challenges,involving both experimental and algorithmic developments,including the recent incorporation of artificial intelligence.Additionally,we cover recent progress in phase and pulse front control based on spatial modulators,which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes.展开更多
In this paper, the disturbance propagation and active vibration control of a finite L-shaped beam axe studied. The dynamic response of the structure is obtained by the travelling wave approach. The active vibration su...In this paper, the disturbance propagation and active vibration control of a finite L-shaped beam axe studied. The dynamic response of the structure is obtained by the travelling wave approach. The active vibration suppression of the finite L-shaped beam is performed based on the structural vibration power flow. In the numerical calculation, the influences of the near field effect of the error sensor and the small error of the control forces on the control results are all considered. The simulation results indicate that the structural vibration response in the medium and high frequency regions can be effectively computed by the travelling wave method. The effect of the active control by controlling the power flow is much better than that by controlling the acceleration in some cases. And the control results by the power flow method are slightly affected by the locations of the error sensor and the small error of the control forces.展开更多
Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and us...Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.展开更多
The concept of shape factors of the fusion-solidification zone is proposed to describe the weld cross section geometry. According to these shape factors, the electron beam weld fusion-solidification zone is divided in...The concept of shape factors of the fusion-solidification zone is proposed to describe the weld cross section geometry. According to these shape factors, the electron beam weld fusion-solidification zone is divided into four typical shapes and the classification criterion for these typical shapes is suggested. An integrated parameter n, combining the line power density of electron beam and material thermal properties is proposed to describe the relative power input, and another integrated parameter n2 combing the accelerating voltage and focusing current is proposed to reflect the power distribution in the keyhole. A series of new expressions, which can reflect the influence of focusing current, accelerating voltage, beam current, and material thermal properties, are developed to predict the fusion-solidification zone shape based on experimental results nonlinear fitting of n1 and n2.展开更多
A general solution is obtained to a canonical problem of the reflection and refraction of an arbitrary shaped beam by using a uniaxially anisotropic chiral slab.The reflected,internal as well as refracted shaped beams...A general solution is obtained to a canonical problem of the reflection and refraction of an arbitrary shaped beam by using a uniaxially anisotropic chiral slab.The reflected,internal as well as refracted shaped beams are expanded in terms of cylindrical vector wave functions,and the expansion coefficients are determined by using the boundary conditions and method of moments procedure.As two typical examples,the normalized field intensity distributions are evaluated for a fundamental Gaussian beam and Hermite-Gaussian beam,and some propagation properties,especially the negative refraction phenomenon,are discussed briefly.展开更多
The electron optical column for the variable rectangular-shaped beam lithographysystem DJ-2 is described,with emphasis on the analysis of the optical configuration and theshaping deflection compensation.In this column...The electron optical column for the variable rectangular-shaped beam lithographysystem DJ-2 is described,with emphasis on the analysis of the optical configuration and theshaping deflection compensation.In this column the variable spot shaping is performed with aminimum number of lenses by a more reasonable optical scheme.A high-sensitivity electrostaticshaping deflector with sequential parallel-plates is implemented for high-speed spot shaping.With a precise linear and rotational approach,the spot current density,the edge resolution aswell as the position of spot origin remain unchanged when the spot size varies.Experiments showthat the spot current density of over 0.4 A/cm^2 is obtained with a tungsten hairpin cathode,andthe edge resolution is better than 0.2μm within a 2×2 mm^2 field size.展开更多
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe ...As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.展开更多
In order to obtain uniform exposure in variably shaped electron beam lithography,the beam current density and edge resolution on the target must not change for different spotshapes and sizes.The key to the goal is the...In order to obtain uniform exposure in variably shaped electron beam lithography,the beam current density and edge resolution on the target must not change for different spotshapes and sizes.The key to the goal is the appropriate design of shaping deflectors.A linearand rotation compensation approach is presented.Values of linear and rotation compensationfactors versus the distances between electron source image and centers of deflectors are measuredon an experimental electron beam column with variable spot shaping.The experimental resultsare in good agreement with the calculated ones.展开更多
According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15...According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.展开更多
The low velocity impact responses of shape memory alloy ( SMA ) reinforced composite beams were analyzed by employing the finite element method. The finite element dynamic equntion was solved by the Newmark direct i...The low velocity impact responses of shape memory alloy ( SMA ) reinforced composite beams were analyzed by employing the finite element method. The finite element dynamic equntion was solved by the Newmark direct integration method, the impact contact force was determined asing the Hertzian contact law, and the influence of SMA .fibers on stiffiwss matrix is studied. Numerical results show that the SMA fibers can effectively improve the low velocity impact response property of composite beam.展开更多
Different weld shapes of 45mm thickness TA15 titanium alloy were obtained by choosing appropriate electron beam welding parameters,and the influence of weld shape on fatigue performance of the joints was investigated ...Different weld shapes of 45mm thickness TA15 titanium alloy were obtained by choosing appropriate electron beam welding parameters,and the influence of weld shape on fatigue performance of the joints was investigated by analytic hierarchy process.The results show that four typical weld shapes were formed,according to their geometry characters,which are respectively named as bell shape,funnel shape,nail shape,and wedge shape.Weld shape effect the fatigue life and dispersion of the experiment data of the joint.The sequencing of fatigue performance of the joints with four different shapes by analytic hierarchy mathematical model is bell shape,funnel shape,wedge shape,and nail shape.It is validated by trial results that the analytic hierarchy mathematical model is effective and practical.展开更多
Shaping the light beam is always essential for laser technology and its applications.Among the shaping technologies,shaping the laser in its Fourier domain is a widely used and effective method,such as a pulse shaper,...Shaping the light beam is always essential for laser technology and its applications.Among the shaping technologies,shaping the laser in its Fourier domain is a widely used and effective method,such as a pulse shaper,or a 4f system with a phase mask or an iris in between.Orbital angular momentum(OAM)modes spectrum,the Fourier transform of the light field in azimuth,provides a perspective for shaping the light.Here,we propose and experimentally demonstrate a shaping strategy for the azimuthal field by modulating the complex amplitude of the OAM mode spectrum.The scheme utilizes multi-plane light conversion technology and consists only of a spatial light modulator and a mirror.Multiple functions,including beam rotating,beam splitting/combining in azimuth,and OAM mode filtering,are demonstrated.Our work provides a compact and programmable solution for modulating the OAM mode spectrum and shaping beams in azimuth.展开更多
基金supported by the French ANRT agence nationale de la recherche technologique under the CIFRE conventions industrielles de formation par la recherche framework.
文摘This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing.Specifically,we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency,both critical for surface and bulk processing applications.Given the inherent physical limitations of spatial light modulators such as spatial resolution,fill factor,and phase modulation range.We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles.We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns.The paper includes application examples across a wide range of fields,from surgery to surface structuring,cutting,bulk photo-inscription of optical functions,and additive manufacturing,highlighting the significant enhancements in processing speed and precision due to spatial beam shaping.The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods.We discuss several advancements addressing these challenges,involving both experimental and algorithmic developments,including the recent incorporation of artificial intelligence.Additionally,we cover recent progress in phase and pulse front control based on spatial modulators,which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes.
基金Project supported by the National Natural Science Foundation of China (Nos. 10672017 and 10632020)
文摘In this paper, the disturbance propagation and active vibration control of a finite L-shaped beam axe studied. The dynamic response of the structure is obtained by the travelling wave approach. The active vibration suppression of the finite L-shaped beam is performed based on the structural vibration power flow. In the numerical calculation, the influences of the near field effect of the error sensor and the small error of the control forces on the control results are all considered. The simulation results indicate that the structural vibration response in the medium and high frequency regions can be effectively computed by the travelling wave method. The effect of the active control by controlling the power flow is much better than that by controlling the acceleration in some cases. And the control results by the power flow method are slightly affected by the locations of the error sensor and the small error of the control forces.
基金Supported by National Natural Science Foundation of China(No.51268054)Natural Science Foundation of Tianjin(No.13JCQNJC07300)the foundation of Key Laboratory of Coast Civil Structure Safety(Tianjin University),Ministry of Education of China(No.2011-1)
文摘Based on the introductions of a type of diaphragm-through connection between concrete-filled square steel tubular columns (CFSSTCs) and H-shaped steel beams,a finite element model of the connection is developed and used to investigate the seismic behavior of the connection.The results of the finite element model are validated by a set of cyclic loading tests.The cyclic loading tests and the finite element analyses indicate that the failure mode of the suggested connections is plastic hinge at the beam with inelastic rotation angle exceeding 0.04 rad.The suggested connections have sufficient strength,plastic deformation and energy dissipation capacity to be used in composite moment frames as beam-to-column rigid connections.
文摘The concept of shape factors of the fusion-solidification zone is proposed to describe the weld cross section geometry. According to these shape factors, the electron beam weld fusion-solidification zone is divided into four typical shapes and the classification criterion for these typical shapes is suggested. An integrated parameter n, combining the line power density of electron beam and material thermal properties is proposed to describe the relative power input, and another integrated parameter n2 combing the accelerating voltage and focusing current is proposed to reflect the power distribution in the keyhole. A series of new expressions, which can reflect the influence of focusing current, accelerating voltage, beam current, and material thermal properties, are developed to predict the fusion-solidification zone shape based on experimental results nonlinear fitting of n1 and n2.
基金Project supported by the National Natural Science Foundation of China(Grant No.61771385)the Science Foundation for Distinguished Young Scholars of Shaanxi Province,China(Grant No.2020JC-42)+1 种基金the Fund from the Science and Technology on Solid-State Laser Laboratory,China(Grant No.6142404180301)the Science and Technology Research Plan of Xi’an City,China(Grant No.GXYD14.26).
文摘A general solution is obtained to a canonical problem of the reflection and refraction of an arbitrary shaped beam by using a uniaxially anisotropic chiral slab.The reflected,internal as well as refracted shaped beams are expanded in terms of cylindrical vector wave functions,and the expansion coefficients are determined by using the boundary conditions and method of moments procedure.As two typical examples,the normalized field intensity distributions are evaluated for a fundamental Gaussian beam and Hermite-Gaussian beam,and some propagation properties,especially the negative refraction phenomenon,are discussed briefly.
文摘The electron optical column for the variable rectangular-shaped beam lithographysystem DJ-2 is described,with emphasis on the analysis of the optical configuration and theshaping deflection compensation.In this column the variable spot shaping is performed with aminimum number of lenses by a more reasonable optical scheme.A high-sensitivity electrostaticshaping deflector with sequential parallel-plates is implemented for high-speed spot shaping.With a precise linear and rotational approach,the spot current density,the edge resolution aswell as the position of spot origin remain unchanged when the spot size varies.Experiments showthat the spot current density of over 0.4 A/cm^2 is obtained with a tungsten hairpin cathode,andthe edge resolution is better than 0.2μm within a 2×2 mm^2 field size.
基金supported by the National Natural Science Foundation of China (10872142 and 10632040)New Century Excellent Talents in University of China (NCET-05-0247)the Key Program of the Natural Science Foundation of Tianjin (09JCZDJ26800)
文摘As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.
文摘In order to obtain uniform exposure in variably shaped electron beam lithography,the beam current density and edge resolution on the target must not change for different spotshapes and sizes.The key to the goal is the appropriate design of shaping deflectors.A linearand rotation compensation approach is presented.Values of linear and rotation compensationfactors versus the distances between electron source image and centers of deflectors are measuredon an experimental electron beam column with variable spot shaping.The experimental resultsare in good agreement with the calculated ones.
文摘According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.
文摘The low velocity impact responses of shape memory alloy ( SMA ) reinforced composite beams were analyzed by employing the finite element method. The finite element dynamic equntion was solved by the Newmark direct integration method, the impact contact force was determined asing the Hertzian contact law, and the influence of SMA .fibers on stiffiwss matrix is studied. Numerical results show that the SMA fibers can effectively improve the low velocity impact response property of composite beam.
文摘Different weld shapes of 45mm thickness TA15 titanium alloy were obtained by choosing appropriate electron beam welding parameters,and the influence of weld shape on fatigue performance of the joints was investigated by analytic hierarchy process.The results show that four typical weld shapes were formed,according to their geometry characters,which are respectively named as bell shape,funnel shape,nail shape,and wedge shape.Weld shape effect the fatigue life and dispersion of the experiment data of the joint.The sequencing of fatigue performance of the joints with four different shapes by analytic hierarchy mathematical model is bell shape,funnel shape,wedge shape,and nail shape.It is validated by trial results that the analytic hierarchy mathematical model is effective and practical.
基金supported by the National Key Research and Development Program of China (Grant No.2019YFA0706302)the National Natural Science Foundation of China (Grant No.62335019)+2 种基金the Basic and Applied Basic Research Foundation of Guangdong Province (Grant Nos.2021B1515020093 and 2021B1515120057)the Science and Technology Program of Guangzhou (Grant No.202103030001)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (Grant No.2017BT01X121).
文摘Shaping the light beam is always essential for laser technology and its applications.Among the shaping technologies,shaping the laser in its Fourier domain is a widely used and effective method,such as a pulse shaper,or a 4f system with a phase mask or an iris in between.Orbital angular momentum(OAM)modes spectrum,the Fourier transform of the light field in azimuth,provides a perspective for shaping the light.Here,we propose and experimentally demonstrate a shaping strategy for the azimuthal field by modulating the complex amplitude of the OAM mode spectrum.The scheme utilizes multi-plane light conversion technology and consists only of a spatial light modulator and a mirror.Multiple functions,including beam rotating,beam splitting/combining in azimuth,and OAM mode filtering,are demonstrated.Our work provides a compact and programmable solution for modulating the OAM mode spectrum and shaping beams in azimuth.