期刊文献+
共找到2,930篇文章
< 1 2 147 >
每页显示 20 50 100
Bayesian system identification and chaotic prediction from data for stochastic Mathieu-van der Pol-Duffing energy harvester
1
作者 Di Liu Shen Xu Jinzhong Ma 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第2期89-92,共4页
In this paper,the approximate Bayesian computation combines the particle swarm optimization and se-quential Monte Carlo methods,which identify the parameters of the Mathieu-van der Pol-Duffing chaotic energy harvester... In this paper,the approximate Bayesian computation combines the particle swarm optimization and se-quential Monte Carlo methods,which identify the parameters of the Mathieu-van der Pol-Duffing chaotic energy harvester system.Then the proposed method is applied to estimate the coefficients of the chaotic model and the response output paths of the identified coefficients compared with the observed,which verifies the effectiveness of the proposed method.Finally,a partial response sample of the regular and chaotic responses,determined by the maximum Lyapunov exponent,is applied to detect whether chaotic motion occurs in them by a 0-1 test.This paper can provide a reference for data-based parameter iden-tification and chaotic prediction of chaotic vibration energy harvester systems. 展开更多
关键词 Vibration energy harvester Approximate bayesian computation 0–1 test Parameter identification Chaotic prediction
在线阅读 下载PDF
Dynamic Reliability Assessment Approach for Deepwater Subsea Wellhead Systems via Hybrid Bayesian Networks
2
作者 LI Jia-yi CHANG Yuan-jiang +2 位作者 LIU Xiu-quan XU Liang-bin CHEN Guo-ming 《China Ocean Engineering》 2025年第1期100-110,共11页
The deepwater subsea wellhead(SW)system is the foundation for the construction of oil and gas wells and the crucial channel for operation.During riser connection operation,the SW system is subjected to cyclic dynamic ... The deepwater subsea wellhead(SW)system is the foundation for the construction of oil and gas wells and the crucial channel for operation.During riser connection operation,the SW system is subjected to cyclic dynamic loads which cause fatigue damage to the SW system,and continuously accumulated fatigue damage leads to fatigue failure of the SW system,rupture,and even blowout accidents.This paper proposes a hybrid Bayesian network(HBN)-based dynamic reliability assessment approach for deepwater SW systems during their service life.In the proposed approach,the relationship between the accumulation of fatigue damage and the fatigue failure probability of the SW system is predicted,only considering normal conditions.The HBN model,which includes the accumulation of fatigue damage under normal conditions and the other factors affecting the fatigue of the SW system,is subsequently developed.When predictive and diagnostic analysis techniques are adopted,the dynamic reliability of the SW system is achieved,and the most influential factors are determined.Finally,corresponding safety control measures are proposed to improve the reliability of the SW system effectively.The results illustrate that the fatigue failure speed increases rapidly when the accumulation fatigue damage is larger than 0.45 under normal conditions and that the reliability of the SW system is larger than 94%within the design life. 展开更多
关键词 deepwater subsea wellhead system RELIABILITY accumulation fatigue damage hybrid bayesian network
在线阅读 下载PDF
Efficient identification of photovoltaic cell parameters via Bayesian neural network-artificial ecosystem optimization algorithm
3
作者 Bo Yang Ruyi Zheng +2 位作者 Yucun Qian Boxiao Liang Jingbo Wang 《Global Energy Interconnection》 2025年第2期316-337,共22页
Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,a... Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively. 展开更多
关键词 Photovoltaic cell bayesian neural network Artificial ecosystem optimization Parameter identification
在线阅读 下载PDF
Trade-off and synergy effects,driving factors,and spatial optimization of ecosystem services in the Wuding River Basin of China:A study based on the Bayesian Belief Network approach
4
作者 FAN Liangwei WANG Ni +3 位作者 WANG Tingting LIU Zheng WAN Yong LI Zhiwei 《Journal of Arid Land》 2025年第12期1669-1693,共25页
The Wuding River Basin,situated in the Loess Plateau of northern China,is an ecologically fragile region facing severe soil erosion and imbalanced ecosystem service(ES)functions.However,the mechanisms driving the spat... The Wuding River Basin,situated in the Loess Plateau of northern China,is an ecologically fragile region facing severe soil erosion and imbalanced ecosystem service(ES)functions.However,the mechanisms driving the spatiotemporal evolution of ES functions,as well as the trade-offs and synergies among these functions,remain poorly understood,constraining effective watershed-scale management.To address this challenge,this study quantified four ES functions,i.e.,water yield(WY),carbon storage(CS),habitat quality(HQ),and soil conservation(SC)in the Wuding River Basin from 1990 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoff(InVEST)model,and proposed an innovative integration of InVEST with a Bayesian Belief Network(BBN)to nonlinearly identify trade-off and synergy relationships among ES functions through probabilistic inference.A trade-off and synergy index(TSI)was developed to assess the spatial interaction intensity among ES functions,while sensitivity and scenario analyses were employed to determine key driving factors,followed by spatial optimization to delineate functional zones.Results revealed distinct spatiotemporal variations:WY increased from 98.69 to 120.52 mm;SC rose to an average of 3.05×10^(4) t/hm^(2);CS remained relatively stable(about 15.50 t/km^(2));and HQ averaged 0.51 with localized declines.The BBN achieved a high accuracy of 81.9%and effectively identified strong synergies between WY and SC,as well as between CS and HQ,while clear trade-offs were observed between WY and SC versus CS and HQ.Sensitivity analysis indicated precipitation(variance reduction of 9.4%),land use(9.8%),and vegetation cover(9.1%)as key driving factors.Spatial optimization further showed that core supply and ecological regulation zones are concentrated in the central-southern and southeastern basin,while ecological strengthening and optimization core zones dominate the central-northern and southeastern margins,highlighting strong spatial heterogeneity.Overall,this study advances ES research by combining process-based quantification with probabilistic modeling,offering a robust framework for studying nonlinear interactions,driving mechanisms,and optimization strategies,and providing a transferable paradigm for watershed-scale ES management and ecological planning in arid and semi-arid areas. 展开更多
关键词 ecosystem service functions trade-offs and synergies bayesian Belief Network spatial pattern optimization Wuding River Basin
在线阅读 下载PDF
Combined Fault Tree Analysis and Bayesian Network for Reliability Assessment of Marine Internal Combustion Engine
5
作者 Ivana Jovanović Çağlar Karatuğ +1 位作者 Maja Perčić Nikola Vladimir 《哈尔滨工程大学学报(英文版)》 2026年第1期239-258,共20页
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ... This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels. 展开更多
关键词 Fault tree analysis bayesian network RELIABILITY REDUNDANCY Internal combustion engine
在线阅读 下载PDF
Fault detection and diagnosis for data incomplete industrial systems with new Bayesian network approach 被引量:15
6
作者 Zhengdao Zhang Jinlin Zhu Feng Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期500-511,共12页
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d... For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements. 展开更多
关键词 fault detection and diagnosis bayesian network Gaussian mixture model data incomplete non-imputation.
在线阅读 下载PDF
Joint Multi-Domain Channel Estimation Based on Sparse Bayesian Learning for OTFS System 被引量:14
7
作者 Yong Liao Xue Li 《China Communications》 SCIE CSCD 2023年第1期14-23,共10页
Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next gene... Since orthogonal time-frequency space(OTFS)can effectively handle the problems caused by Doppler effect in high-mobility environment,it has gradually become a promising candidate for modulation scheme in the next generation of mobile communication.However,the inter-Doppler interference(IDI)problem caused by fractional Doppler poses great challenges to channel estimation.To avoid this problem,this paper proposes a joint time and delayDoppler(DD)domain based on sparse Bayesian learning(SBL)channel estimation algorithm.Firstly,we derive the original channel response(OCR)from the time domain channel impulse response(CIR),which can reflect the channel variation during one OTFS symbol.Compare with the traditional channel model,the OCR can avoid the IDI problem.After that,the dimension of OCR is reduced by using the basis expansion model(BEM)and the relationship between the time and DD domain channel model,so that we have turned the underdetermined problem into an overdetermined problem.Finally,in terms of sparsity of channel in delay domain,SBL algorithm is used to estimate the basis coefficients in the BEM without any priori information of channel.The simulation results show the effectiveness and superiority of the proposed channel estimation algorithm. 展开更多
关键词 OTFS sparse bayesian learning basis expansion model channel estimation
在线阅读 下载PDF
A Bayesian approach for integrating multilevel priors and data for aerospace system reliability assessment 被引量:7
8
作者 Jian GUO Zhaojun LI Thomas KEYSER 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期41-53,共13页
This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available infor... This paper investigates Bayesian methods for aerospace system reliability analysis using various sources of test data and expert knowledge at both subsystem and system levels. Four sce- narios based on available information for the priors and test data of a system and/or subsystems are studied using specific Bayesian inference techniques. This paper proposes the Bayesian melding method for integrating subsystem-level priors with system-level priors for both system- and subsystem-level reliability analysis. System and subsystem reliability outcomes are compared under different scenarios. Computational challenges for posterior inferences using the sophisticated Bayesian melding method are addressed using Markov Chain Monte Carlo (MCMC) and adaptive Sam- piing Importance Re-sampling (SIR) methods. A case study with simulation results illustrates the applications of the proposed methods and provides insights for aerospace system reliability analysis using available multilevel information. 展开更多
关键词 bayesian inference bayesian melding Multilevel information Markov Chain Monte Carlo (MCMC) Sampling Importance Resampling (SIR) system reliability
原文传递
Comparative efficacy and safety of cognitive enhancers for treating vascular cognitive impairment: systematic review and Bayesian network meta-analysis 被引量:10
9
作者 Bo-Ru Jin Hua-Yan Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期805-816,共12页
Objective: To assess and compare the clinical efficacy and safety of cognitive enhancers(donepezil, galantamine, rivastigmine, and memantine) on cognition, behavior, function, and global status in patients with vascul... Objective: To assess and compare the clinical efficacy and safety of cognitive enhancers(donepezil, galantamine, rivastigmine, and memantine) on cognition, behavior, function, and global status in patients with vascular cognitive impairment.Data sources: The initial literature search was performed with PubMed, EMBASE, the Cochrane Methodology Register, the Cochrane Central Register of Controlled Trials, and Cumulative Index to Nursing & Allied Health(CINAHL) from inception to January 2018 for studies regarding donepezil, galantamine, rivastigmine, and memantine for treatment of vascular cognitive impairment.Data selection: Randomized controlled trials on donepezil, galantamine, rivastigmine, and memantine as monotherapy in the treatment of vascular cognitive impairment were included. A Bayesian network meta-analysis was conducted. Outcome measures: Efficacy was assessed by changes in scores of the Alzheimer's Disease Assessment Scale, cognitive subscale, Mini-Mental State Examination, Neuropsychiatric Inventory scores and Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input, Activities of Daily Living, the Clinical Dementia Rating scale. Safety was evaluated by mortality, total adverse events(TAEs), serious adverse events(SAEs), nausea, vomiting. diarrhea, or cerebrovascular accidents(CVAs). Results: After screening 1717 citations, 12 randomized controlled trials were included. Donepezil and rivastigmine(mean difference(e) = –0.77, 95% confidence interval(CI): 0.25–1.32; MD = 1.05, 95% CI: 0.18–1.79) were significantly more effective than placebo in reducing Mini-Mental State Examination scores. Donepezil, galantamine, and memantine(MD = –1.30, 95% CI: –2.27 to –0.42; MD = –1.67, 95% CI: –3.36 to –0.06; MD = –2.27, 95% CI: –3.91 to –0.53) showed superior benefits on the Alzheimer's Disease Assessment Scale–cognitive scores compared with placebo. Memantine(MD = 2.71, 95% CI: 1.05–7.29) improved global status(Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input) more than the placebo. Safety results revealed that donepezil 10 mg(odds ratio(OR) = 3.04, 95% CI: 1.86–5.41) contributed to higer risk of adverse events than placebo. Galantamine(OR = 5.64, 95% CI: 1.31–26.71) increased the risk of nausea. Rivastigmine(OR = 16.80, 95% CI: 1.78–319.26) increased the risk of vomiting. No agents displayed a significant risk of serious adverse events, mortality, cerebrovascular accidents, or diarrhea.Conclusion: We found significant efficacy of donepezil, galantamine, and memantine on cognition. Memantine can provide significant efficacy in global status. They are all safe and well tolerated. 展开更多
关键词 nerve REGENERATION VASCULAR cognitive impairment VASCULAR dementia pharmacotherapy CHOLINESTERASE inhibitors donepezil GALANTAMINE RIVASTIGMINE memantine systematic review bayesian network META-ANALYSIS neural REGENERATION
暂未订购
Construction of fault diagnosis system for control rod drive mechanism based on knowledge graph and Bayesian inference 被引量:6
10
作者 Xue‑Jun Jiang Wen Zhou Jie Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第2期58-75,共18页
Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research objec... Knowledge graph technology has distinct advantages in terms of fault diagnosis.In this study,the control rod drive mechanism(CRDM)of the liquid fuel thorium molten salt reactor(TMSR-LF1)was taken as the research object,and a fault diagnosis system was proposed based on knowledge graph.The subject–relation–object triples are defined based on CRDM unstructured data,including design specification,operation and maintenance manual,alarm list,and other forms of expert experience.In this study,we constructed a fault event ontology model to label the entity and relationship involved in the corpus of CRDM fault events.A three-layer robustly optimized bidirectional encoder representation from transformers(RBT3)pre-training approach combined with a text convolutional neural network(TextCNN)was introduced to facilitate the application of the constructed CRDM fault diagnosis graph database for fault query.The RBT3-TextCNN model along with the Jieba tool is proposed for extracting entities and recognizing the fault query intent simultaneously.Experiments on the dataset collected from TMSR-LF1 CRDM fault diagnosis unstructured data demonstrate that this model has the potential to improve the effect of intent recognition and entity extraction.Additionally,a fault alarm monitoring module was developed based on WebSocket protocol to deliver detailed information about the appeared fault to the operator automatically.Furthermore,the Bayesian inference method combined with the variable elimination algorithm was proposed to enable the development of a relatively intelligent and reliable fault diagnosis system.Finally,a CRDM fault diagnosis Web interface integrated with graph data visualization was constructed,making the CRDM fault diagnosis process intuitive and effective. 展开更多
关键词 CRDM Knowledge graph Fault diagnosis bayesian inference RBT3-TextCNN Web interface
在线阅读 下载PDF
Bayesian sequential testing for exponential life system with reliability growth 被引量:4
11
作者 Yunyan Xing Xiaoyue Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第6期1023-1029,共7页
A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censore... A Bayesian sequential testing method is proposed to evaluate system reliability index with reliability growth during development.The method develops a reliability growth model of repairable systems for failure censored test,and figures out the approach to determine the prior distribution of the system failure rate by applying the reliability growth model to incorporate the multistage test data collected from system development.Furthermore,the procedure for the Bayesian sequential testing is derived for the failure rate of the exponential life system,which enables the decision to terminate or continue development test.Finally,a numerical example is given to illustrate the efficiency of the proposed model and procedure. 展开更多
关键词 reliability growth bayesian method prior distribution sequential testing exponential life system.
在线阅读 下载PDF
Bayesian method for system reliability assessment of overlapping pass/fail data 被引量:4
12
作者 Zhipeng Hao Shengkui Zeng Jianbin Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期208-214,共7页
For high reliability and long life systems, system pass/fail data are often rare. Integrating lower-level data, such as data drawn from the subsystem or component pass/fail testing,the Bayesian analysis can improve th... For high reliability and long life systems, system pass/fail data are often rare. Integrating lower-level data, such as data drawn from the subsystem or component pass/fail testing,the Bayesian analysis can improve the precision of the system reliability assessment. If the multi-level pass/fail data are overlapping,one challenging problem for the Bayesian analysis is to develop a likelihood function. Since the computation burden of the existing methods makes them infeasible for multi-component systems, this paper proposes an improved Bayesian approach for the system reliability assessment in light of overlapping data. This approach includes three steps: fristly searching for feasible paths based on the binary decision diagram, then screening feasible points based on space partition and constraint decomposition, and finally simplifying the likelihood function. An example of a satellite rolling control system demonstrates the feasibility and the efficiency of the proposed approach. 展开更多
关键词 system reliability assessment bayesian analysis limited samples overlapping pass/fail data
在线阅读 下载PDF
Reliability Modeling and Evaluation of Complex Multi-State System Based on Bayesian Networks Considering Fuzzy Dynamic of Faults 被引量:4
13
作者 Fangjun Zuo Meiwei Jia +2 位作者 Guang Wen Huijie Zhang Pingping Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期993-1012,共20页
In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditiona... In the traditional reliability evaluation based on the Bayesian method,the failure probability of nodes is usually expressed by the average failure rate within a period of time.Aiming at the shortcomings of traditional Bayesian network reliability evaluation methods,this paper proposes a Bayesian network reliability evaluation method considering dynamics and fuzziness.The fuzzy theory and the dynamic of component failure probability are introduced to construct the dynamic fuzzy set function.Based on the solving characteristics of the dynamic fuzzy set and Bayesian network,the fuzzy dynamic probability and fuzzy dynamic importance degree of the fault state of leaf nodes are solved.Finally,through the dynamic fuzzy reliability analysis of CNC machine tool hydraulic system balance circuit,the application of this method in system reliability evaluation is verified,which provides support for fault diagnosis of CNC machine tools. 展开更多
关键词 bayesian network(BN) dynamics FUZZY MULTI-STATE
在线阅读 下载PDF
A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study 被引量:4
14
作者 CAI Bao-ping ZHANG Yan-ping +5 位作者 YUAN Xiao-bing GAO Chun-tan LIU Yong-hong CHEN Guo-ming LIU Zeng-kai JI Ren-jie 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期597-607,共11页
Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metric... Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach. 展开更多
关键词 structure resilience structure system remaining useful life dynamic bayesian networks
在线阅读 下载PDF
An evaluation method of contribution rate based on fuzzy Bayesian networks for equipment system-of-systems architecture 被引量:6
15
作者 XU Renjie LIU Xin +2 位作者 CUI Donghao XIE Jian GONG Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第3期574-587,共14页
The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate ev... The contribution rate of equipment system-of-systems architecture(ESoSA)is an important index to evaluate the equipment update,development,and architecture optimization.Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems(ESoS),and the Bayesian network is an effective tool to solve the uncertain information,a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network(FBN)is proposed.Firstly,based on the operation loop theory,an ESoSA is constructed considering three aspects:reconnaissance equipment,decision equipment,and strike equipment.Next,the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information.Furthermore,the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA,and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established.Finally,the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA.Compared with traditional methods,the evaluation method based on FBN takes various failure states of equipment into consideration,is free of acquiring accurate probability of traditional equipment failure,and models the uncertainty of the relationship between equipment.The proposed method not only supplements and improves the ESoSA contribution rate assessment method,but also broadens the application scope of the Bayesian network. 展开更多
关键词 equipment system-of-systems architecture(ESoSA) contribution rate evaluation fuzzy bayesian network(FBN) fuzzy set theory
在线阅读 下载PDF
Role-based Bayesian decision framework for autonomous unmanned systems 被引量:4
16
作者 PANG Weijian MA Xinyi +2 位作者 LIANG Xueming LIU Xiaogang DONG Erwa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1397-1408,共12页
In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanne... In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems. 展开更多
关键词 autonomous unmanned systems multi-entity bayesian network(MEBN) situation awareness decision modeling.
在线阅读 下载PDF
Reliability Risk Evaluation Method for Complex Mechanical System Based on Optimal Bayesian Network 被引量:4
17
作者 黄开启 古莹奎 梁玲强 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期177-182,共6页
In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree wa... In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree was converted into five different Bayesian network models. The Bayesian network with the minimum conditional probability table specification and the highest computation efficiency was selected as the optimal network. The two heuristics were used to optimize the Bayesian network. The fault diagnosis and causal reasoning of the system were implemented by using the selected Bayesian network. The calculation methods of Fussel-Vesely( FV),risk reduction worth( RRW),Birnbaum measure( BM) and risk achievement worth( RAW) importances were presented. A certain engine was taken as an application example to illustrate the proposed method. The results show that not only the correlation of the relevant variables in the system can be accurately expressed and the calculation complexity can be reduced,but also the relatively weak link in the system can be located accurately. 展开更多
关键词 bayesian network fault tree risk evaluation importance measure conditional probability table
在线阅读 下载PDF
Reliability analysis of monotone coherent multi-state systems based on Bayesian networks 被引量:2
18
作者 Binghua Song Zhongbao Zhou +2 位作者 Chaoqun Ma Jinglun Zhou Shaofeng Geng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第6期1326-1335,共10页
The Bayesian networks (BNs) provide a robust probabilistic method of reasoning under uncertainty and have been successfully applied to a variety of real-world tasks. Aiming to explore the capabilities of the BN formal... The Bayesian networks (BNs) provide a robust probabilistic method of reasoning under uncertainty and have been successfully applied to a variety of real-world tasks. Aiming to explore the capabilities of the BN formalism in reliability analysis of monotone coherent multi-state systems, the BNs are compared with a popular tool for reliability analysis of monotone coherent multi-state systems, namely the multi-state fault trees (MFTs). It is shown that any MFT can be directly mapped into BN and the basic inference techniques on the latter may be used to obtain classical parameters computed from the former (i.e. probability distribution of top variable, minimal upper vectors and maximum lower vectors for any performance level, importance measures of components). Furthermore, some additional information can be obtained by using BN, both at the modeling and analysis level. At the modeling level, several restrictive assumptions implicit in the MFT methodology can be removed and various kinds of dependencies among components can be accommodated. At the analysis level, a general diagnostic analysis can be performed. The comparison of these methods is illustrated by an example of the water supply system. © 2016 Beijing Institute of Aerospace Information. 展开更多
关键词 bayesian networks Probability distributions RELIABILITY Reliability theory VECTORS Water supply Water supply systems
在线阅读 下载PDF
Comparison of dynamic Bayesian network approaches for online diagnosis of aircraft system 被引量:2
19
作者 于劲松 冯威 +1 位作者 唐荻音 刘浩 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2926-2934,共9页
The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To a... The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To address this problem, two dynamic Bayesian network(DBN) approaches are proposed. One approach prunes the DBN of system, and then uses particle filter(PF) for this pruned DBN(PDBN) to perform online diagnosis. The problem is that estimates from a PF tend to have high variance for small sample sets. Using large sample sets is computationally expensive. The other approach compiles the PDBN into a dynamic arithmetic circuit(DAC) using an offline procedure that is applied only once, and then uses this circuit to provide online diagnosis recursively. This approach leads to the most computational consumption in the offline procedure. The experimental results show that the DAC, compared with the PF for PDBN, not only provides more reliable online diagnosis, but also offers much faster inference. 展开更多
关键词 online diagnosis dynamic bayesian network particle filter dynamic arithmetic circuit
在线阅读 下载PDF
A perspective on regression and Bayesian approaches for system identification of pattern formation dynamics 被引量:2
20
作者 Zhenlin Wang Bowei Wu +1 位作者 Krishna Garikipati Xun Huan 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第3期188-194,共7页
We present two approaches to system identification, i.e. the identification of partial differentialequations (PDEs) from measurement data. The first is a regression-based variational systemidentification procedure tha... We present two approaches to system identification, i.e. the identification of partial differentialequations (PDEs) from measurement data. The first is a regression-based variational systemidentification procedure that is advantageous in not requiring repeated forward model solves andhas good scalability to large number of differential operators. However it has strict data typerequirements needing the ability to directly represent the operators through the available data.The second is a Bayesian inference framework highly valuable for providing uncertaintyquantification, and flexible for accommodating sparse and noisy data that may also be indirectquantities of interest. However, it also requires repeated forward solutions of the PDE modelswhich is expensive and hinders scalability. We provide illustrations of results on a model problemfor pattern formation dynamics, and discuss merits of the presented methods. 展开更多
关键词 Computational mechanics Materials physics Pattern formation bayesian inference Inverse problem
在线阅读 下载PDF
上一页 1 2 147 下一页 到第
使用帮助 返回顶部