The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biolog...The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data.展开更多
提出一种切片Gibbs抽样的马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)算法来计算空间误差模型未知参数的联合贝叶斯估计,通过2个模拟仿真说明提出的贝叶斯估计方法的有效性与切片Gibbs抽样算法的优势,实证分析说明模型和提出的...提出一种切片Gibbs抽样的马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)算法来计算空间误差模型未知参数的联合贝叶斯估计,通过2个模拟仿真说明提出的贝叶斯估计方法的有效性与切片Gibbs抽样算法的优势,实证分析说明模型和提出的贝叶斯估计方法的有效性。展开更多
文摘The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data.