The risks of developing complex diseases are likely to be determined by single nucleotide polymorphisms (SNPs), which are the most common form of DNA variations. Rapidly developing genotyping technologies have made it...The risks of developing complex diseases are likely to be determined by single nucleotide polymorphisms (SNPs), which are the most common form of DNA variations. Rapidly developing genotyping technologies have made it possible to assess the influence of SNPs on a particular disease. The aim of this paper is to identify the risk/protective factors of a disease, which are modeled as a subset of SNPs (with specified alleles) with the maximum odds ratio. On the basis of risk/protective factor and the relationship between nucleotides and amino acids, two novel risk/protective factors (called k-relaxed risk/protective factors and weighted-relaxed risk/protective factors) are proposed to consider more complex disease-associated SNPs. However, the enormous amount of possible SNPs interactions presents a mathematical and computational challenge. In this paper, we use the Bayesian Optimization Algorithm (BOA) to search for the risk/protective factors of a particular disease. Determining the Bayesian network (BN) structure is NP-hard; therefore, the binary particle swarm optimization was used to determine the BN structure. The proposed algorithm was tested on four datasets. Experimental results showed that the algorithm proposed in this paper is a promising method for discovering SNPs interactions that cause/prevent diseases.展开更多
发展基于Pareto多目标人工鱼群算法(Multi⁃Objective Artificial Fish Swarm Algorithm,MO⁃AFSA),解决结构健康监测中传感器位置多目标优化的问题。构建与观测模态线性独立性、结构损伤灵敏度和损伤信息冗余性有关的传感器位置多目标优...发展基于Pareto多目标人工鱼群算法(Multi⁃Objective Artificial Fish Swarm Algorithm,MO⁃AFSA),解决结构健康监测中传感器位置多目标优化的问题。构建与观测模态线性独立性、结构损伤灵敏度和损伤信息冗余性有关的传感器位置多目标优化目标函数;改进人工鱼群算法的追尾和觅食行为,并引入外部档案集以处理寻优过程中的互不支配解,结合Pareto概念选取与理想点欧式距离最近的Pareto解为最优解;以三层平面钢框架结构为数值算例,用基于Pareto人工鱼群算法求解传感器位置多目标优化方案,并进行结构损伤识别。研究结果表明:用所提方法得到的传感器测点在结构中均匀分布,获取的结构损伤信息更为全面,冗余性低,振型独立性好,能够较精确地识别损伤位置和损伤程度,并且抗噪性能好。展开更多
基金supported by the National Natural Science Foundation of China(60774086 and 61173111)Ph.D.Program Foundation of Ministry of Education of China(20090201110027)
文摘The risks of developing complex diseases are likely to be determined by single nucleotide polymorphisms (SNPs), which are the most common form of DNA variations. Rapidly developing genotyping technologies have made it possible to assess the influence of SNPs on a particular disease. The aim of this paper is to identify the risk/protective factors of a disease, which are modeled as a subset of SNPs (with specified alleles) with the maximum odds ratio. On the basis of risk/protective factor and the relationship between nucleotides and amino acids, two novel risk/protective factors (called k-relaxed risk/protective factors and weighted-relaxed risk/protective factors) are proposed to consider more complex disease-associated SNPs. However, the enormous amount of possible SNPs interactions presents a mathematical and computational challenge. In this paper, we use the Bayesian Optimization Algorithm (BOA) to search for the risk/protective factors of a particular disease. Determining the Bayesian network (BN) structure is NP-hard; therefore, the binary particle swarm optimization was used to determine the BN structure. The proposed algorithm was tested on four datasets. Experimental results showed that the algorithm proposed in this paper is a promising method for discovering SNPs interactions that cause/prevent diseases.
文摘发展基于Pareto多目标人工鱼群算法(Multi⁃Objective Artificial Fish Swarm Algorithm,MO⁃AFSA),解决结构健康监测中传感器位置多目标优化的问题。构建与观测模态线性独立性、结构损伤灵敏度和损伤信息冗余性有关的传感器位置多目标优化目标函数;改进人工鱼群算法的追尾和觅食行为,并引入外部档案集以处理寻优过程中的互不支配解,结合Pareto概念选取与理想点欧式距离最近的Pareto解为最优解;以三层平面钢框架结构为数值算例,用基于Pareto人工鱼群算法求解传感器位置多目标优化方案,并进行结构损伤识别。研究结果表明:用所提方法得到的传感器测点在结构中均匀分布,获取的结构损伤信息更为全面,冗余性低,振型独立性好,能够较精确地识别损伤位置和损伤程度,并且抗噪性能好。