This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden node...This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden nodes,training was conducted for 30,000 iterations to ensure comprehensive data capture.By analyzing the distribution of absolute errors positively correlated with the cross-section for the isotope 159Tb,as well as the relative errors unrelated to the cross-section,we confirmed that the network effectively captured the data features without overfitting.Comparison with the TENDL-2021 Database demonstrated the BNN's reliability in fitting photonuclear cross-sections with lower average errors.The predictions for nuclei with single and double giant dipole resonance peak cross-sections,the accurate determination of the photoneutron reaction threshold in the low-energy region,and the precise description of trends in the high-energy cross-sections further demonstrate the network's generalization ability on the validation set.This can be attributed to the consistency of the training data.By using consistent training sets from different laboratories,Bayesian neural networks can predict nearby unknown cross-sections based on existing laboratory data,thereby estimating the potential differences between other laboratories'existing data and their own measurement results.Experimental measurements of photonuclear reactions on the newly constructed SLEGS beamline will contribute to clarifying the differences in cross-sections within the existing data.展开更多
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi...The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation.展开更多
A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points...A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points from 39 reaction systems induced by ^(6,7)Li,^(9)Be,and ^(10)B.The constructed Bayesian neural network demonstrated a high degree of accuracy in evaluating complete fusion cross-sections.By comparing the predicted cross-sections with those obtained from a single-barrier penetration model,the suppression effect of ^(6,7)Li and ^(9)Be with a stable nucleus was systematically analyzed.In the cases of ^(6)Li and ^(7)Li,less suppression was predicted for relatively light-mass targets than for heavy-mass targets,and a notably distinct dependence relationship was identified,suggesting that the predominant breakup mechanisms might change in different mass target regions.In addition,minimum suppression factors were predicted to occur near target nuclei with neutron-closed shell.展开更多
Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,a...Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively.展开更多
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian ne...Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.展开更多
This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing gro...This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing grounds.The analysis is based on database of tunneling cases by numerical modeling to evaluate the ground convergence and possibility of machine entrapment.The results of initial numerical analysis were verified in comparison with some case studies.A dataset was established by performing additional numerical modeling of various scenarios based on variation of the most critical parameters affecting shield jamming.This includes compressive strength and deformation modulus of rock mass,tunnel radius,shield length,shield thickness,in situ stresses,depth of over-excavation,and skin friction between shield and rock.Using the dataset,an ANN was trained to predict the contact pressures from a series of ground properties and machine parameters.Furthermore,the continuous and discretized BNs were used to analyze the risk of shield jamming.The results of these two different BN methods are compared to the field observations and summarized in this paper.The developed risk models can estimate the required thrust force in both cases.The BN models can also be used in the cases with incomplete geological and geomechanical properties.展开更多
In many applications,flow measurements are usually sparse and possibly noisy.The reconstruction of a high-resolution flow field from limited and imperfect flow information is significant yet challenging.In this work,w...In many applications,flow measurements are usually sparse and possibly noisy.The reconstruction of a high-resolution flow field from limited and imperfect flow information is significant yet challenging.In this work,we propose an innovative physics-constrained Bayesian deep learning approach to reconstruct flow fields from sparse,noisy velocity data,where equationbased constraints are imposed through the likelihood function and uncertainty of the reconstructed flow can be estimated.Specifically,a Bayesian deep neural network is trained on sparse measurement data to capture the flow field.In the meantime,the violation of physical laws will be penalized on a large number of spatiotemporal points where measurements are not available.A non-parametric variational inference approach is applied to enable efficient physicsconstrained Bayesian learning.Several test cases on idealized vascular flows with synthetic measurement data are studied to demonstrate the merit of the proposed method.展开更多
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t...Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.展开更多
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ...Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.展开更多
This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in ...This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.展开更多
Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal co...Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal correlations of measurement while drilling (MWD) data with traditional intelligent models. In this work, we develop a novel hybrid neural network, which integrates the Convolution Neural Network (CNN) and the Gate Recurrent Unit (GRU) for predicting BHP fluctuations more accurately. The CNN structure is used to analyze spatial local dependency patterns and the GRU structure is used to discover depth variation trends of MWD data. To further improve the prediction accuracy, we explore two types of GRU-based structure: skip-GRU and attention-GRU, which can capture more long-term potential periodic correlation in drilling data. Then, the different model structures tuned by the Bayesian optimization (BO) algorithm are compared and analyzed. Results indicate that the hybrid models can extract spatial-temporal information of data effectively and predict more accurately than random forests, extreme gradient boosting, back propagation neural network, CNN and GRU. The CNN-attention-GRU model with BO algorithm shows great superiority in prediction accuracy and robustness due to the hybrid network structure and attention mechanism, having the lowest mean absolute percentage error of 0.025%. This study provides a reference for solving the problem of extracting spatial and temporal characteristics and guidance for managed pressure drilling in complex formations.展开更多
A neural network with a feed forward topology and Bayesian regularization training algorithm is used to predict the austenite formation temperatures (At1 and A13) by considering the percentage of alloying elements i...A neural network with a feed forward topology and Bayesian regularization training algorithm is used to predict the austenite formation temperatures (At1 and A13) by considering the percentage of alloying elements in chemical composition of steel. The data base used here involves a large variety of different steel types such as struc- tural steels, stainless steels, rail steels, spring steels, high temperature creep resisting steels and tool steels. Scatter diagrams and mean relative error (MRE) statistical criteria are used to compare the performance of developed neural network with the results of Andrew% empirical equations and a feed forward neural network with "gradient descent with momentum" training algorithm. The results showed that Bayesian regularization neural network has the best performance. Also, due to the satisfactory results of the developed neural network, it was used to investigate the effect of the chemical composition on Ac1 and At3 temperatures. Results are in accordance with materials science theories.展开更多
Soil compressibility parameters are important indicators in the geotechnical field and are affected by various factors such as natural conditions and human interference.When the sample size is too large,conventional m...Soil compressibility parameters are important indicators in the geotechnical field and are affected by various factors such as natural conditions and human interference.When the sample size is too large,conventional methods require massive human and financial resources.In order to reasonably simulate the compressibility parameters of the sample,this paper firstly adopts the correlation analysis to select seven influencing factors.Each of the factors has a high correlation with compressibility parameters.Meanwhile,the proportion of the weights of the seven factors in the Bayesian neural network is analyzed based on Garson theory.Secondly,an output model of the compressibility parameters of BR-BP silty clay is established based on Bayesian regularized BP neural network.Finally,the model is used to simulate the measured compressibility parameters.The output results are compared with the measured values and the output results of the traditional LM-BP neural network.The results show that the model is more stable and has stronger nonlinear fitting ability.The output of the model is basically consistent with the actual value.Compared with the traditional LMBP neural network model,its data sensitivity is enhanced,and the accuracy of the output result is significantly improved,the average value of the relative error of the compression coefficient is reduced from 15.54%to 6.15%,and the average value of the relative error of the compression modulus is reduced from 6.07%to 4.62%.The results provide a new technical method for obtaining the compressibility parameters of silty clay in this area,showing good theoretical significance and practical value.展开更多
Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the lim...Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs.Current energy efficiency strategies,such as clustering,multi-hop routing,and data aggregation,face challenges,including uneven energy depletion,high computational demands,and suboptimal cluster head(CH)selection.To address these limitations,this paper proposes a hybrid methodology that optimizes energy consumption(EC)while maintaining network performance.The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic(LEACH-D)protocol using an Artificial Neural Network(ANN)and Bayesian Regularization Algorithm(BRA).LEACH-D improves upon conventional LEACH by ensuring more uniform energy usage across SNs,mitigating inefficiencies from random CH selection.The ANN further enhances CH selection and routing processes,effectively reducing data transmission overhead and idle listening.Simulation results reveal that the LEACH-D-ANN model significantly reduces EC and extends the network’s lifespan compared to existing protocols.This framework offers a promising solution to the energy efficiency challenges in WSNs,paving the way for more sustainable and reliable network deployments.展开更多
High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated wi...High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated with density functional theory to search the configuration space of the CoNiRhRu HEA system.The BNN model was developed by considering six independent features of Co-Ni,Co-Rh,CoRu,Ni-Rh,Ni-Ru,and Rh-Ru in different shells and energies of structures as the labels.The root mean squared error of the energy predicted by BNN is 1.37 me V/atom.Moreover,the influence of feature periodicity on the energy of HEA in theoretical calculations is discussed.We found that when the neural network is optimized to a certain extent,only using the accuracy indicator of root mean square error to evaluate model performance is no longer accurate in some scenarios.More importantly,we reveal the importance of uncertainty quantification for neural networks to predict new structures of HEAs with proper confidence based on BNN.展开更多
Diabetes mellitus is a long-term condition characterized by hyperglycemia.It could lead to plenty of difficulties.According to rising morbidity in recent years,the world’s diabetic patients will exceed 642 million by...Diabetes mellitus is a long-term condition characterized by hyperglycemia.It could lead to plenty of difficulties.According to rising morbidity in recent years,the world’s diabetic patients will exceed 642 million by 2040,implying that one out of every ten persons will be diabetic.There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’lives.Due to its rapid development,deep learning(DL)was used to predict numerous diseases.However,DLmethods still suffer from their limited prediction performance due to the hyperparameters selection and parameters optimization.Therefore,the selection of hyper-parameters is critical in improving classification performance.This study presents Convolutional Neural Network(CNN)that has achieved remarkable results in many medical domains where the Bayesian optimization algorithm(BOA)has been employed for hyperparameters selection and parameters optimization.Two issues have been investigated and solved during the experiment to enhance the results.The first is the dataset class imbalance,which is solved using Synthetic Minority Oversampling Technique(SMOTE)technique.The second issue is the model’s poor performance,which has been solved using the Bayesian optimization algorithm.The findings indicate that the Bayesian based-CNN model superbases all the state-of-the-art models in the literature with an accuracy of 89.36%,F1-score of 0.88.6,andMatthews Correlation Coefficient(MCC)of 0.88.6.展开更多
Deuteron separation energy is not only the basis for validating the nuclear mass models and nucleon-nucleon interaction potential,but also can determine the stability of a nuclide to certain extent.Bayesian neural net...Deuteron separation energy is not only the basis for validating the nuclear mass models and nucleon-nucleon interaction potential,but also can determine the stability of a nuclide to certain extent.Bayesian neural network(BNN)approach,which has strong predictive power and can naturally give theoretical errors of predicted values,had been successfully applied to study the different kinds of separations except the deuteron separation.In this paper,several typical nuclear mass models,such as macroscopic model BW2,macroscopic-microscopic model WS4,and microscopic model HFB-31,are chosen to study the deuteron separation energy combining BNN approach.The root-mean-square deviations of these models are partly reduced.In addition,the inclusion of physical parameters related to the pair and shell effects in the input layer can further improve the theoretical accuracy for the deuteron separation energy.The results show that the theoretical predictions are more reliable as more physical features of BNN approach are included.展开更多
Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,...Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,and may be reduced by an inverse procedure that calibrates the simulation results to observations on the real system being simulated.This work proposes an adaptive Bayesian inversion method solved using artificial neural network(ANN)based Markov Chain Monte Carlo simulation.The optimized surrogate model achieves a coefficient of determination at 0.98 by ANN with 247 samples,whereby the computational workload can be greatly reduced.It is also significant to balance the accuracy and efficiency of the ANN model by adaptively updating the sample database.The enrichment samples are obtained from the posterior distribution after iteration,which allows a more accurate and rapid manner to the target posterior.The method was then applied to the hydraulic analysis of an earth dam.After calibrating the global permeability coefficient of the earth dam with the pore water pressure at the downstream unsaturated location,it was validated by the pore water pressure monitoring values at the upstream saturated location.In addition,the uncertainty in the permeability coefficient was reduced,from 0.5 to 0.05.It is shown that the provision of adequate prior information is valuable for improving the efficiency of the Bayesian inversion.展开更多
Creating new molecules with desired properties is a fundamental and challenging problem in chemistry. Reinforcement learning (RL) has shown its utility in this area where the target chemical property values can serve ...Creating new molecules with desired properties is a fundamental and challenging problem in chemistry. Reinforcement learning (RL) has shown its utility in this area where the target chemical property values can serve as a reward signal. At each step of making a new molecule, the RL agent learns selecting an action from a list of many chemically valid actions for a given molecule, implying a great uncertainty associated with its learning. In a traditional implementation of deep RL algorithms, deterministic neural networks are typically employed, thus allowing the agent to choose one action from one sampled action at each step. In this paper, we proposed a new strategy of applying Bayesian neural networks to RL to reduce uncertainty so that the agent can choose one action from a pool of sampled actions at each step, and investigated its benefits in molecule design. Our experiments suggested the Bayesian approach could create molecules of desirable chemical quality while maintained their diversity, a very difficult goal to achieve in machine learning of molecules. We further exploited their diversity by using them to train a generative model to yield more novel drug-like molecules, which were absent in the training molecules as we know novelty is essential for drug candidate molecules. In conclusion, Bayesian approach could offer a balance between exploitation and exploration in RL, and a balance between optimization and diversity in molecule design.展开更多
基金supported by National key research and development program(No.2022YFA1602404)the National Natural Science Foundation of China(Nos.12388102,12275338,12005280)the Key Laboratory of Nuclear Data foundation(No.JCKY2022201C152)。
文摘This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden nodes,training was conducted for 30,000 iterations to ensure comprehensive data capture.By analyzing the distribution of absolute errors positively correlated with the cross-section for the isotope 159Tb,as well as the relative errors unrelated to the cross-section,we confirmed that the network effectively captured the data features without overfitting.Comparison with the TENDL-2021 Database demonstrated the BNN's reliability in fitting photonuclear cross-sections with lower average errors.The predictions for nuclei with single and double giant dipole resonance peak cross-sections,the accurate determination of the photoneutron reaction threshold in the low-energy region,and the precise description of trends in the high-energy cross-sections further demonstrate the network's generalization ability on the validation set.This can be attributed to the consistency of the training data.By using consistent training sets from different laboratories,Bayesian neural networks can predict nearby unknown cross-sections based on existing laboratory data,thereby estimating the potential differences between other laboratories'existing data and their own measurement results.Experimental measurements of photonuclear reactions on the newly constructed SLEGS beamline will contribute to clarifying the differences in cross-sections within the existing data.
基金Saudi Arabia for funding this work through Small Research Group Project under Grant Number RGP.1/316/45.
文摘The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation.
基金supported by National Natural Science Foundation of China(Nos.12105080 and 12375123)China Postdoctoral Science Foundation(No.2023M731015)Natural Science Foundation of Henan Province(No.242300422048).
文摘A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points from 39 reaction systems induced by ^(6,7)Li,^(9)Be,and ^(10)B.The constructed Bayesian neural network demonstrated a high degree of accuracy in evaluating complete fusion cross-sections.By comparing the predicted cross-sections with those obtained from a single-barrier penetration model,the suppression effect of ^(6,7)Li and ^(9)Be with a stable nucleus was systematically analyzed.In the cases of ^(6)Li and ^(7)Li,less suppression was predicted for relatively light-mass targets than for heavy-mass targets,and a notably distinct dependence relationship was identified,suggesting that the predominant breakup mechanisms might change in different mass target regions.In addition,minimum suppression factors were predicted to occur near target nuclei with neutron-closed shell.
基金supported by the National Natural Science Foundation of China(62263014)the Yunnan Provincial Basic Research Project(202301AT070443,202401AT070344).
文摘Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.41374118)the Research Fund for the Higher Education Doctoral Program of China(Grant No.20120162110015)+3 种基金the China Postdoctoral Science Foundation(Grant No.2015M580700)the Hunan Provincial Natural Science Foundation,the China(Grant No.2016JJ3086)the Hunan Provincial Science and Technology Program,China(Grant No.2015JC3067)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.15B138)
文摘Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter αk, which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
文摘This study presents an application of artificial neural network(ANN)and Bayesian network(BN)for evaluation of jamming risk of the shielded tunnel boring machines(TBMs)in adverse ground conditions such as squeezing grounds.The analysis is based on database of tunneling cases by numerical modeling to evaluate the ground convergence and possibility of machine entrapment.The results of initial numerical analysis were verified in comparison with some case studies.A dataset was established by performing additional numerical modeling of various scenarios based on variation of the most critical parameters affecting shield jamming.This includes compressive strength and deformation modulus of rock mass,tunnel radius,shield length,shield thickness,in situ stresses,depth of over-excavation,and skin friction between shield and rock.Using the dataset,an ANN was trained to predict the contact pressures from a series of ground properties and machine parameters.Furthermore,the continuous and discretized BNs were used to analyze the risk of shield jamming.The results of these two different BN methods are compared to the field observations and summarized in this paper.The developed risk models can estimate the required thrust force in both cases.The BN models can also be used in the cases with incomplete geological and geomechanical properties.
基金support from the National Science Foundation (Grant CMMI-1934300)Defense Advanced Research Projects Agency (DARPA) under the Physics of Artificial Intelligence (PAI) program (Grant HR00111890034)partial funding support by graduate fellowship from China Scholarship Council (CSC) in this effort
文摘In many applications,flow measurements are usually sparse and possibly noisy.The reconstruction of a high-resolution flow field from limited and imperfect flow information is significant yet challenging.In this work,we propose an innovative physics-constrained Bayesian deep learning approach to reconstruct flow fields from sparse,noisy velocity data,where equationbased constraints are imposed through the likelihood function and uncertainty of the reconstructed flow can be estimated.Specifically,a Bayesian deep neural network is trained on sparse measurement data to capture the flow field.In the meantime,the violation of physical laws will be penalized on a large number of spatiotemporal points where measurements are not available.A non-parametric variational inference approach is applied to enable efficient physicsconstrained Bayesian learning.Several test cases on idealized vascular flows with synthetic measurement data are studied to demonstrate the merit of the proposed method.
文摘Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.
基金the National Natural Science Foundation of China(No.51875209)the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120060)the Open Funds of State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment。
文摘Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.
基金supported by the National Natural Science Foundation of China(Nos.11905018 and 11875328).
文摘This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.
基金The authors express their appreciation to National Key Research and Development Project“Key Scientific Issues of Revolutionary Technology”(2019YFA0708300)Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)+1 种基金Distinguished Young Foundation of National Natural Science Foundation of China(52125401)Science Foundation of China University of Petroleum,Beijing(2462022SZBH002).
文摘Many scholars have focused on applying machine learning models in bottom hole pressure (BHP) prediction. However, the complex and uncertain conditions in deep wells make it difficult to capture spatial and temporal correlations of measurement while drilling (MWD) data with traditional intelligent models. In this work, we develop a novel hybrid neural network, which integrates the Convolution Neural Network (CNN) and the Gate Recurrent Unit (GRU) for predicting BHP fluctuations more accurately. The CNN structure is used to analyze spatial local dependency patterns and the GRU structure is used to discover depth variation trends of MWD data. To further improve the prediction accuracy, we explore two types of GRU-based structure: skip-GRU and attention-GRU, which can capture more long-term potential periodic correlation in drilling data. Then, the different model structures tuned by the Bayesian optimization (BO) algorithm are compared and analyzed. Results indicate that the hybrid models can extract spatial-temporal information of data effectively and predict more accurately than random forests, extreme gradient boosting, back propagation neural network, CNN and GRU. The CNN-attention-GRU model with BO algorithm shows great superiority in prediction accuracy and robustness due to the hybrid network structure and attention mechanism, having the lowest mean absolute percentage error of 0.025%. This study provides a reference for solving the problem of extracting spatial and temporal characteristics and guidance for managed pressure drilling in complex formations.
基金Financial support of mechanical engineering center of excellence at Roudbar Azad University
文摘A neural network with a feed forward topology and Bayesian regularization training algorithm is used to predict the austenite formation temperatures (At1 and A13) by considering the percentage of alloying elements in chemical composition of steel. The data base used here involves a large variety of different steel types such as struc- tural steels, stainless steels, rail steels, spring steels, high temperature creep resisting steels and tool steels. Scatter diagrams and mean relative error (MRE) statistical criteria are used to compare the performance of developed neural network with the results of Andrew% empirical equations and a feed forward neural network with "gradient descent with momentum" training algorithm. The results showed that Bayesian regularization neural network has the best performance. Also, due to the satisfactory results of the developed neural network, it was used to investigate the effect of the chemical composition on Ac1 and At3 temperatures. Results are in accordance with materials science theories.
基金This project is sponsored by the Basic scientific research business funding project of Institute of Seismic Prediction,CEA(2018 IESLZ06)the Natural Science Foundation of China(51778590)Earthquake Science and Technology Spark Project(XH20057)。
文摘Soil compressibility parameters are important indicators in the geotechnical field and are affected by various factors such as natural conditions and human interference.When the sample size is too large,conventional methods require massive human and financial resources.In order to reasonably simulate the compressibility parameters of the sample,this paper firstly adopts the correlation analysis to select seven influencing factors.Each of the factors has a high correlation with compressibility parameters.Meanwhile,the proportion of the weights of the seven factors in the Bayesian neural network is analyzed based on Garson theory.Secondly,an output model of the compressibility parameters of BR-BP silty clay is established based on Bayesian regularized BP neural network.Finally,the model is used to simulate the measured compressibility parameters.The output results are compared with the measured values and the output results of the traditional LM-BP neural network.The results show that the model is more stable and has stronger nonlinear fitting ability.The output of the model is basically consistent with the actual value.Compared with the traditional LMBP neural network model,its data sensitivity is enhanced,and the accuracy of the output result is significantly improved,the average value of the relative error of the compression coefficient is reduced from 15.54%to 6.15%,and the average value of the relative error of the compression modulus is reduced from 6.07%to 4.62%.The results provide a new technical method for obtaining the compressibility parameters of silty clay in this area,showing good theoretical significance and practical value.
文摘Wireless Sensor Networks(WSNs)have emerged as crucial tools for real-time environmental monitoring through distributed sensor nodes(SNs).However,the operational lifespan of WSNs is significantly constrained by the limited energy resources of SNs.Current energy efficiency strategies,such as clustering,multi-hop routing,and data aggregation,face challenges,including uneven energy depletion,high computational demands,and suboptimal cluster head(CH)selection.To address these limitations,this paper proposes a hybrid methodology that optimizes energy consumption(EC)while maintaining network performance.The proposed approach integrates the Low Energy Adaptive Clustering Hierarchy with Deterministic(LEACH-D)protocol using an Artificial Neural Network(ANN)and Bayesian Regularization Algorithm(BRA).LEACH-D improves upon conventional LEACH by ensuring more uniform energy usage across SNs,mitigating inefficiencies from random CH selection.The ANN further enhances CH selection and routing processes,effectively reducing data transmission overhead and idle listening.Simulation results reveal that the LEACH-D-ANN model significantly reduces EC and extends the network’s lifespan compared to existing protocols.This framework offers a promising solution to the energy efficiency challenges in WSNs,paving the way for more sustainable and reliable network deployments.
基金supported by the Shanghai Rising-Star Program (20QA1406800)the National Natural Science Foundation of China (22072091,91745102,92045301)。
文摘High entropy alloys(HEAs)have excellent application prospects in catalysis because of their rich components and configuration space.In this work,we develop a Bayesian neural network(BNN)based on energies calculated with density functional theory to search the configuration space of the CoNiRhRu HEA system.The BNN model was developed by considering six independent features of Co-Ni,Co-Rh,CoRu,Ni-Rh,Ni-Ru,and Rh-Ru in different shells and energies of structures as the labels.The root mean squared error of the energy predicted by BNN is 1.37 me V/atom.Moreover,the influence of feature periodicity on the energy of HEA in theoretical calculations is discussed.We found that when the neural network is optimized to a certain extent,only using the accuracy indicator of root mean square error to evaluate model performance is no longer accurate in some scenarios.More importantly,we reveal the importance of uncertainty quantification for neural networks to predict new structures of HEAs with proper confidence based on BNN.
基金This research/paper was fully supported by Universiti Teknologi PETRONAS,under the Yayasan Universiti Teknologi PETRONAS(YUTP)Fundamental Research Grant Scheme(015LC0-311).
文摘Diabetes mellitus is a long-term condition characterized by hyperglycemia.It could lead to plenty of difficulties.According to rising morbidity in recent years,the world’s diabetic patients will exceed 642 million by 2040,implying that one out of every ten persons will be diabetic.There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’lives.Due to its rapid development,deep learning(DL)was used to predict numerous diseases.However,DLmethods still suffer from their limited prediction performance due to the hyperparameters selection and parameters optimization.Therefore,the selection of hyper-parameters is critical in improving classification performance.This study presents Convolutional Neural Network(CNN)that has achieved remarkable results in many medical domains where the Bayesian optimization algorithm(BOA)has been employed for hyperparameters selection and parameters optimization.Two issues have been investigated and solved during the experiment to enhance the results.The first is the dataset class imbalance,which is solved using Synthetic Minority Oversampling Technique(SMOTE)technique.The second issue is the model’s poor performance,which has been solved using the Bayesian optimization algorithm.The findings indicate that the Bayesian based-CNN model superbases all the state-of-the-art models in the literature with an accuracy of 89.36%,F1-score of 0.88.6,andMatthews Correlation Coefficient(MCC)of 0.88.6.
基金Supported by National Natural Science Foundation of China (12065003)Central Government Guidance Funds for Local Scientific and Technological Development of China (Guike ZY22096024)+1 种基金Natural Science Foundation of Guangxi (2019GXNSFDA185011)Scientific Research and Technology Development Project of Guilin (20210104-2)。
文摘Deuteron separation energy is not only the basis for validating the nuclear mass models and nucleon-nucleon interaction potential,but also can determine the stability of a nuclide to certain extent.Bayesian neural network(BNN)approach,which has strong predictive power and can naturally give theoretical errors of predicted values,had been successfully applied to study the different kinds of separations except the deuteron separation.In this paper,several typical nuclear mass models,such as macroscopic model BW2,macroscopic-microscopic model WS4,and microscopic model HFB-31,are chosen to study the deuteron separation energy combining BNN approach.The root-mean-square deviations of these models are partly reduced.In addition,the inclusion of physical parameters related to the pair and shell effects in the input layer can further improve the theoretical accuracy for the deuteron separation energy.The results show that the theoretical predictions are more reliable as more physical features of BNN approach are included.
基金Project(202006430012)supported by the China Scholarship Council。
文摘Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,and may be reduced by an inverse procedure that calibrates the simulation results to observations on the real system being simulated.This work proposes an adaptive Bayesian inversion method solved using artificial neural network(ANN)based Markov Chain Monte Carlo simulation.The optimized surrogate model achieves a coefficient of determination at 0.98 by ANN with 247 samples,whereby the computational workload can be greatly reduced.It is also significant to balance the accuracy and efficiency of the ANN model by adaptively updating the sample database.The enrichment samples are obtained from the posterior distribution after iteration,which allows a more accurate and rapid manner to the target posterior.The method was then applied to the hydraulic analysis of an earth dam.After calibrating the global permeability coefficient of the earth dam with the pore water pressure at the downstream unsaturated location,it was validated by the pore water pressure monitoring values at the upstream saturated location.In addition,the uncertainty in the permeability coefficient was reduced,from 0.5 to 0.05.It is shown that the provision of adequate prior information is valuable for improving the efficiency of the Bayesian inversion.
文摘Creating new molecules with desired properties is a fundamental and challenging problem in chemistry. Reinforcement learning (RL) has shown its utility in this area where the target chemical property values can serve as a reward signal. At each step of making a new molecule, the RL agent learns selecting an action from a list of many chemically valid actions for a given molecule, implying a great uncertainty associated with its learning. In a traditional implementation of deep RL algorithms, deterministic neural networks are typically employed, thus allowing the agent to choose one action from one sampled action at each step. In this paper, we proposed a new strategy of applying Bayesian neural networks to RL to reduce uncertainty so that the agent can choose one action from a pool of sampled actions at each step, and investigated its benefits in molecule design. Our experiments suggested the Bayesian approach could create molecules of desirable chemical quality while maintained their diversity, a very difficult goal to achieve in machine learning of molecules. We further exploited their diversity by using them to train a generative model to yield more novel drug-like molecules, which were absent in the training molecules as we know novelty is essential for drug candidate molecules. In conclusion, Bayesian approach could offer a balance between exploitation and exploration in RL, and a balance between optimization and diversity in molecule design.