期刊文献+
共找到6,459篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing reliability in photonuclear cross-section fitting with Bayesian neural networks 被引量:1
1
作者 Qian-Kun Sun Yue Zhang +8 位作者 Zi-Rui Hao Hong-Wei Wang Gong-Tao Fan Hang-Hua Xu Long-Xiang Liu Sheng Jin Yu-Xuan Yang Kai-Jie Chen Zhen-Wei Wang 《Nuclear Science and Techniques》 2025年第3期146-156,共11页
This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden node... This study investigates photonuclear reaction(γ,n)cross-sections using Bayesian neural network(BNN)analysis.After determining the optimal network architecture,which features two hidden layers,each with 50 hidden nodes,training was conducted for 30,000 iterations to ensure comprehensive data capture.By analyzing the distribution of absolute errors positively correlated with the cross-section for the isotope 159Tb,as well as the relative errors unrelated to the cross-section,we confirmed that the network effectively captured the data features without overfitting.Comparison with the TENDL-2021 Database demonstrated the BNN's reliability in fitting photonuclear cross-sections with lower average errors.The predictions for nuclei with single and double giant dipole resonance peak cross-sections,the accurate determination of the photoneutron reaction threshold in the low-energy region,and the precise description of trends in the high-energy cross-sections further demonstrate the network's generalization ability on the validation set.This can be attributed to the consistency of the training data.By using consistent training sets from different laboratories,Bayesian neural networks can predict nearby unknown cross-sections based on existing laboratory data,thereby estimating the potential differences between other laboratories'existing data and their own measurement results.Experimental measurements of photonuclear reactions on the newly constructed SLEGS beamline will contribute to clarifying the differences in cross-sections within the existing data. 展开更多
关键词 Photoneutron reaction bayesian neural network Machine learning Gamma source SLEGS
在线阅读 下载PDF
Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images
2
作者 Anandhavalli Muniasamy Ashwag Alasmari 《Computer Modeling in Engineering & Sciences》 2025年第4期569-592,共24页
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi... The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation. 展开更多
关键词 bayesian neural networks(bnNs) convolution neural networks(CNN) bayesian convolution neural networks(BCNNs) predictive modeling precision medicine uncertainty quantification
在线阅读 下载PDF
Bayesian Network Reconstruction and Iterative Divergence Problem Solving Method Based on Norm Minimization
3
作者 Kuo Li Aimin Wang +2 位作者 Limin Wang Yuetan Zhao Xinyu Zhu 《Computer Modeling in Engineering & Sciences》 2025年第4期617-637,共21页
A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves... A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves precise adjustment of the network structure by constructing a preliminary random network model and introducing small-world network characteristics and combines L1 norm minimization regularization techniques to control model complexity and optimize the inference process of variable dependencies.In the experiment of game network reconstruction,when the success rate of the L1 norm minimization model’s existence connection reconstruction reaches 100%,the minimum data required is about 40%,while the minimum data required for a sparse Bayesian learning network is about 45%.In terms of operational efficiency,the running time for minimizing the L1 normis basically maintained at 1.0 s,while the success rate of connection reconstruction increases significantly with an increase in data volume,reaching a maximum of 13.2 s.Meanwhile,in the case of a signal-to-noise ratio of 10 dB,the L1 model achieves a 100% success rate in the reconstruction of existing connections,while the sparse Bayesian network had the highest success rate of 90% in the reconstruction of non-existent connections.In the analysis of actual cases,the maximum lift and drop track of the research method is 0.08 m.The mean square error is 5.74 cm^(2).The results indicate that this norm minimization-based method has good performance in data efficiency and model stability,effectively reducing the impact of outliers on the reconstruction results to more accurately reflect the actual situation. 展开更多
关键词 bayesian norm minimization network reconstruction iterative divergence SPARSITY
在线阅读 下载PDF
Dynamic Reliability Assessment Approach for Deepwater Subsea Wellhead Systems via Hybrid Bayesian Networks
4
作者 LI Jia-yi CHANG Yuan-jiang +2 位作者 LIU Xiu-quan XU Liang-bin CHEN Guo-ming 《China Ocean Engineering》 2025年第1期100-110,共11页
The deepwater subsea wellhead(SW)system is the foundation for the construction of oil and gas wells and the crucial channel for operation.During riser connection operation,the SW system is subjected to cyclic dynamic ... The deepwater subsea wellhead(SW)system is the foundation for the construction of oil and gas wells and the crucial channel for operation.During riser connection operation,the SW system is subjected to cyclic dynamic loads which cause fatigue damage to the SW system,and continuously accumulated fatigue damage leads to fatigue failure of the SW system,rupture,and even blowout accidents.This paper proposes a hybrid Bayesian network(HBN)-based dynamic reliability assessment approach for deepwater SW systems during their service life.In the proposed approach,the relationship between the accumulation of fatigue damage and the fatigue failure probability of the SW system is predicted,only considering normal conditions.The HBN model,which includes the accumulation of fatigue damage under normal conditions and the other factors affecting the fatigue of the SW system,is subsequently developed.When predictive and diagnostic analysis techniques are adopted,the dynamic reliability of the SW system is achieved,and the most influential factors are determined.Finally,corresponding safety control measures are proposed to improve the reliability of the SW system effectively.The results illustrate that the fatigue failure speed increases rapidly when the accumulation fatigue damage is larger than 0.45 under normal conditions and that the reliability of the SW system is larger than 94%within the design life. 展开更多
关键词 deepwater subsea wellhead system RELIABILITY accumulation fatigue damage hybrid bayesian network
在线阅读 下载PDF
Predictions of complete fusion cross‑sections of ^(6,7)Li,^(9)Be,and ^(10)B using a Bayesian neural network method
5
作者 Kai‑Xuan Cheng Rong‑Xing He +1 位作者 Chun‑Yuan Qiao Chun‑Wang Ma 《Nuclear Science and Techniques》 2025年第10期169-175,共7页
A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points... A machine learning approach based on Bayesian neural networks was developed to predict the complete fusion cross-sections of weakly bound nuclei.This method was trained and validated using 475 experimental data points from 39 reaction systems induced by ^(6,7)Li,^(9)Be,and ^(10)B.The constructed Bayesian neural network demonstrated a high degree of accuracy in evaluating complete fusion cross-sections.By comparing the predicted cross-sections with those obtained from a single-barrier penetration model,the suppression effect of ^(6,7)Li and ^(9)Be with a stable nucleus was systematically analyzed.In the cases of ^(6)Li and ^(7)Li,less suppression was predicted for relatively light-mass targets than for heavy-mass targets,and a notably distinct dependence relationship was identified,suggesting that the predominant breakup mechanisms might change in different mass target regions.In addition,minimum suppression factors were predicted to occur near target nuclei with neutron-closed shell. 展开更多
关键词 Fusion reaction Weakly bound nuclei Machine learning bayesian neural network
在线阅读 下载PDF
Meteorological and traffic effects on air pollutants using Bayesian networks and deep learning
6
作者 Yuan-Chien Lin Yu-Ting Lin +1 位作者 Cai-Rou Chen Chun-Yeh Lai 《Journal of Environmental Sciences》 2025年第6期54-70,共17页
Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air qual... Traffic emissions have become the major air pollution source in urban areas.Therefore,understanding the highly non-stational and complex impact of traffic factors on air quality is very important for building air quality prediction models.Using real-world air pollutant data from Taipei City,this study integrates diverse factors,including traffic flow,speed,rainfall patterns,andmeteorological factors.We constructed a Bayesian network probabilitymodel based on rainfall events as a big data analysis framework to investigate understand traffic factor causality relationships and condition probabilities for meteorological factors and air pollutant concentrations.Generalized Additive Model(GAM)verified non-linear relationships between traffic factors and air pollutants.Consequently,we propose a long short term memory(LSTM)model to predict airborne pollutant concentrations.This study propose a new approach of air pollutants and meteorological variable analysis procedure by considering both rainfall amount and patterns.Results indicate improved air quality when controlling vehicle speed above 40 km/h and maintaining an average vehicle flow<1200 vehicles per hour.This study also classified rainfall events into four types depending on its characteristic.Wet deposition from varied rainfall types significantly affects air quality,with TypeⅠrainfall events(long-duration heavy rain)having the most pronounced impact.An LSTM model incorporating GAM and Bayesian network outcomes yields excellent performance,achieving correlation R^(2)>0.9 and 0.8 for first and second order air pollutants,i.e.,CO,NO,NO_(2),and NO_(x);and O_(3),PM_(10),and PM_(2.5),respectively. 展开更多
关键词 Air quality Rainfall pattern Traffic emissions Generalized additive model bayesian networks LSTM model
原文传递
Efficient identification of photovoltaic cell parameters via Bayesian neural network-artificial ecosystem optimization algorithm
7
作者 Bo Yang Ruyi Zheng +2 位作者 Yucun Qian Boxiao Liang Jingbo Wang 《Global Energy Interconnection》 2025年第2期316-337,共22页
Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,a... Accurate identification of unknown internal parameters in photovoltaic(PV)cells is crucial and significantly affects the subsequent system-performance analysis and control.However,noise,insufficient data acquisition,and loss of recorded data can deteriorate the extraction accuracy of unknown parameters.Hence,this study proposes an intelligent parameter-identification strategy that integrates artificial ecosystem optimization(AEO)and a Bayesian neural network(BNN)for PV cell parameter extraction.A BNN is used for data preprocessing,including data denoising and prediction.Furthermore,the AEO algorithm is utilized to identify unknown parameters in the single-diode model(SDM),double-diode model(DDM),and three-diode model(TDM).Nine other metaheuristic algorithms(MhAs)are adopted for an unbiased and comprehensive validation.Simulation results show that BNN-based data preprocessing com-bined with effective MhAs significantly improve the parameter-extraction accuracy and stability compared with methods without data preprocessing.For instance,under denoised data,the accuracies of the SDM,DDM,and TDM increase by 99.69%,99.70%,and 99.69%,respectively,whereas their accuracy improvements increase by 66.71%,59.65%,and 70.36%,respectively. 展开更多
关键词 Photovoltaic cell bayesian neural network Artificial ecosystem optimization Parameter identification
在线阅读 下载PDF
Comprehensive review of Bayesian network applications in gastrointestinal cancers
8
作者 Min-Na Zhang Meng-Ju Xue +4 位作者 Bao-Zhen Zhou Jing Xu Hong-Kai Sun Ji-Han Wang Yang-Yang Wang 《World Journal of Clinical Oncology》 2025年第6期45-63,共19页
Gastrointestinal cancers,including esophageal,gastric,colorectal,liver,gallbladder,cholangiocarcinoma,and pancreatic cancers,pose a significant global health challenge due to their high mortality rates and poor progno... Gastrointestinal cancers,including esophageal,gastric,colorectal,liver,gallbladder,cholangiocarcinoma,and pancreatic cancers,pose a significant global health challenge due to their high mortality rates and poor prognosis,particularly when diagnosed at advanced stages.These malignancies,characterized by diverse clinical presentations and etiologies,require innovative approaches for improved management.Bayesian networks(BN)have emerged as a powerful tool in this field,offering the ability to manage uncertainty,integrate heterogeneous data sources,and support clinical decision-making.This review explores the application of BN in addressing critical challenges in gastrointestinal cancers,including the identification of risk factors,early detection,treatment optimization,and prognosis prediction.By integrating genetic predispositions,lifestyle factors,and clinical data,BN hold the potential to enhance survival rates and improve quality of life through personalized treatment strategies.Despite their promise,the widespread adoption of BN is hindered by challenges such as data quality limitations,computational complexities,and the need for greater clinical acceptance.The review concludes with future research directions,emphasizing the development of advanced BN algorithms,the integration of multi-omics data,and strategies to ensure clinical applicability,aiming to fully realize the potential of BN in personalized medicine for gastrointestinal cancers. 展开更多
关键词 Gastrointestinal cancers bayesian networks Heterogeneous data integration Early detection Risk prediction PROGNOSIS Personalized medicine
暂未订购
Exploring the interdependencies among social progress index(SPI)components and their impact on country-level sustainability performance based on Bayesian Belief Network
9
作者 Abroon QAZI 《Regional Sustainability》 2025年第3期87-102,共16页
The social progress index(SPI)measures social and environmental performance beyond traditional economic indicators,providing transparent and actionable insights into the true condition of societies.This study investig... The social progress index(SPI)measures social and environmental performance beyond traditional economic indicators,providing transparent and actionable insights into the true condition of societies.This study investigates the interdependencies among SPI components and their impact on country-level sustainability performance.Using a Bayesian Belief Network(BBN)approach,the analysis explores the interdependencies among 12 SPI components(including advanced education,basic education,environmental quality,freedom and choice,health,housing,inclusive society,information and communications,nutrition and medical care,rights and voice,safety,and water and sanitation)and their collective influence on sustainability performance.Data from the Sustainable Development Report and SPI datasets,covering 162 countries(including Australia,China,United Arab Emirates,United Kingdom,United States,and so on),were used to assess the relative importance of each SPI component.The key findings indicate that advanced education,inclusive society,and freedom and choice make substantial contributions to high sustainability performance,whereas deficiencies in nutrition and medical care,water and sanitation,and freedom and choice are associated with poor sustainability performance.The results reveal that sustainability performance is shaped by a network of interlinked SPI components,with education and inclusion emerging as key levers for progress.The study emphasizes that targeted improvements in specific SPI components can significantly enhance a country’s overall sustainability performance.Rather than visualizing countries’progress through composite indicator-based heat maps,this study explores the interdependencies among SPI components and their role in sustainability performance at the global level.The study underscores the importance of a multidimensional policy approach that addresses social and environmental factors to enhance sustainability.The findings contribute to a deeper understanding of how SPI components interact and shape sustainable development. 展开更多
关键词 Sustainability performance Social progress index(SPI) Advanced education Environmental quality bayesian Belief network(Bbn)
在线阅读 下载PDF
基于SNA-BN的三峡船闸预约调度模式社会风险评估
10
作者 李嵘 刘清 +3 位作者 王磊 钟悦 兰毓峰 南航 《中国安全科学学报》 北大核心 2025年第8期148-155,共8页
为提升三峡船闸智能化水平及风险承载能力,首先,采用社会网络分析(SNA)方法识别并提取三峡船闸预约调度的利益相关方,通过点度中心度、中介中心度和接近中心度这3种中心性指标表征利益相关方的网络特征,并从合法性、合理性、可行性、可... 为提升三峡船闸智能化水平及风险承载能力,首先,采用社会网络分析(SNA)方法识别并提取三峡船闸预约调度的利益相关方,通过点度中心度、中介中心度和接近中心度这3种中心性指标表征利益相关方的网络特征,并从合法性、合理性、可行性、可控性4个维度构建评价指标体系;其次,根据指标间的潜在耦合关系,运用贝叶斯网络(BN)构建三峡船闸预约调度模式社会风险评估模型,以量化各指标作用的方向与强度;最后,通过敏感性分析识别影响社会稳定性的关键因素。结果表明:三峡船闸预约调度模式下的社会风险等级处于较低水平;评价指标体系中的4个准则指标对综合社会风险的影响强度排序为:合法性>可控性>可行性>合理性;规则修订、审批及发布的合规性,负面舆论易发性,群体性事件易发性,预约成功率,安全管理策略覆盖度等指标是影响总体社会风险的关键因素。 展开更多
关键词 社会网络分析(SNA) 贝叶斯网络(bn) 三峡船闸 预约调度 社会风险评估 利益相关方
原文传递
基于BT-BN的无人机运行安全风险分析
11
作者 齐福强 张晓阳 +2 位作者 陈姝宁 孟明源 朱峰 《科学技术与工程》 北大核心 2025年第20期8745-8752,共8页
为有效评估并控制无人机(unmanned aerial vehicle, UAV)运行风险,在总结无人机地面撞击各种风险因素的基础上,分析无人机地面撞击可能的发生原因,确定相应的控制措施,建立风险分析与控制技术相结合的安全屏障模型,可清晰地显示无人机... 为有效评估并控制无人机(unmanned aerial vehicle, UAV)运行风险,在总结无人机地面撞击各种风险因素的基础上,分析无人机地面撞击可能的发生原因,确定相应的控制措施,建立风险分析与控制技术相结合的安全屏障模型,可清晰地显示无人机运行安全致因、缓解措施以及事故后果之间的逻辑关系;进一步将蝴蝶结(bow-tie, BT)模型映射到贝叶斯网络(Bayesian network, BN),量化BT模型中各要素,计算不安全事件发生的概率。结果表明:该模型能够清晰地展现风险控制过程并有效降低无人机运行风险,为无人机运行风险评估与控制提供了一种高效、实用的方法。 展开更多
关键词 无人机(UAV) 运行风险 蝴蝶结(BT)模型 贝叶斯网络(bn) 风险控制
在线阅读 下载PDF
基于DBN-GRA的非坠机民航客机火灾风险分析 被引量:1
12
作者 王霞 孟娟 张海军 《中国安全生产科学技术》 北大核心 2025年第4期202-210,共9页
为降低民航客机火灾事故率,以飞行全过程及3个关键飞行阶段作为维度,采用动态贝叶斯网络模型对非坠机民航客机火灾进行风险分析。根据火灾起火燃烧的当量比及事故演化的过程,基于事故致因模型确定事件因素,构建火灾风险分析模型;收集201... 为降低民航客机火灾事故率,以飞行全过程及3个关键飞行阶段作为维度,采用动态贝叶斯网络模型对非坠机民航客机火灾进行风险分析。根据火灾起火燃烧的当量比及事故演化的过程,基于事故致因模型确定事件因素,构建火灾风险分析模型;收集2014—2024年民航火灾事故数据,确定基本事件的先验概率,并应用BWM法计算中间事件的条件概率;运用灰色关联分析提取各维度关联因素结合动态时序变化构建动态贝叶斯网络,进行火灾风险分析,识别关键风险因素。研究结果表明:非坠机民航客机火灾初期发展阶段时物的因素与环境因素影响最高,充分燃烧阶段时组织管理因素和货物因素影响最高;飞行关键阶段中飞机机体自身因素和组织管理因素为高风险因素。研究结果可为提高非坠机民航客机火灾风险预警与应急管理能力提供决策参考。 展开更多
关键词 非坠机事件 民航客机火灾 动态贝叶斯网络 灰色关联分析 风险分析
在线阅读 下载PDF
基于VMD-BN的液压支架电磁先导阀故障诊断方法研究
13
作者 张杰 杨爱琴 +6 位作者 许春雨 宋建成 田慕琴 宋单阳 李磊 郝振杰 马锐 《机床与液压》 北大核心 2025年第16期164-171,179,共9页
电磁先导阀是液压支架电液控制系统的重要组成部分,其数量大、故障率高且难以识别,直接影响电液控制系统工作的可靠性和连续性,已成为影响综采工作面自动化生产的主要问题之一。针对此,对电液控制系统先导阀的故障检测、故障分析和故障... 电磁先导阀是液压支架电液控制系统的重要组成部分,其数量大、故障率高且难以识别,直接影响电液控制系统工作的可靠性和连续性,已成为影响综采工作面自动化生产的主要问题之一。针对此,对电液控制系统先导阀的故障检测、故障分析和故障诊断方法进行研究,提出基于电流信号变分模态分解和贝叶斯网络的电液控制系统电磁先导阀故障诊断方法。采用变分模态分解算法对液压支架电磁先导阀的驱动电流信号进行分析,利用鲸鱼优化算法优化IMF个数和惩罚因子,得到多个时域和频域的分量。提取电流信号各个分量的能量熵,将其作为故障特征向量并输入所建立的贝叶斯网络中分析故障原因,利用先验概率和条件概率对故障发生的后验概率进行推理。最后,通过煤矿井下实际的故障电磁先导阀对文中所提故障诊断方法进行实验验证。结果表明:所提诊断方法可以基于电磁阀驱动电流单一信源提取能量特征差异,实现电磁先导阀的故障诊断,准确率达到90%;与现有诊断方法相比,准确性提高,实施难度降低。 展开更多
关键词 电磁先导阀 变分模态分解 能量熵 贝叶斯网络 故障诊断
在线阅读 下载PDF
基于FTA-BN模型的多旋翼无人机事故致因分析
14
作者 岳仁田 韩磊 《中国民航大学学报》 2025年第4期91-96,共6页
对多旋翼无人机(UAV,unmanned aerial vehicle)事故致因进行分析,有助于实现多旋翼无人机事故的科学防控。本文调查了382起多旋翼无人机事故案例,建立故障树分析-贝叶斯网络(FTA-BN,fault tree analysis-Bayesian network)模型对多旋翼... 对多旋翼无人机(UAV,unmanned aerial vehicle)事故致因进行分析,有助于实现多旋翼无人机事故的科学防控。本文调查了382起多旋翼无人机事故案例,建立故障树分析-贝叶斯网络(FTA-BN,fault tree analysis-Bayesian network)模型对多旋翼无人机事故成因进行分析。首先,建立以多旋翼无人机事故为顶事件,多旋翼无人机空中撞毁、坠毁、失联为中间事件,事故致因事件为基本事件的故障树模型;其次,根据故障树模型与贝叶斯网络的对应关系将故障树模型转化为贝叶斯网络模型;最后,用Netica软件对贝叶斯网络模型进行后验概率推理和敏感性分析,得出主要的事故致因因素。结果表明,该组合模型不仅能使无人机事故致因的推断变得容易操作,且能得到更可靠的推论。 展开更多
关键词 多旋翼无人机事故 致因分析 故障树分析(FTA) 贝叶斯网络(bn)
在线阅读 下载PDF
基于改进DEMATEL-ISM-BN的人因视角下煤矿事故致因研究 被引量:2
15
作者 赵天亮 王冰山 +7 位作者 台发强 姜琦 王永杰 代宗 常金鹏 马晟翔 傅贵 姜伟 《安全与环境工程》 北大核心 2025年第1期91-99,117,共10页
为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入... 为深入探究人因视角下煤矿事故致因因素之间的相互作用关系和作用路径,找到关键影响因素,通过文献研究、资料收集和现场调研等方法,结合人因分析和分类系统(HFACS)模型理论,构建了包含规章制度完善和实施水平、安全培训水平和安全投入水平等14项指标的人因视角下煤矿事故影响因素体系,并运用基于灰色理论(Grey theory)和贝叶斯网络(BN)的决策试验与评价实验室法与解释结构模型(DEMATEL-ISM)对影响因素进行了分析,得到了各影响因素的关键程度、层次关系、作用路径和人因视角下煤矿事故最大致因链路径。结果表明:首先,利用Grey-DEMATEL法研究分析各影响因素中心度与原因度,识别出安全培训水平、员工安全意识水平、员工知识技能水平、员工安全心理水平等主要影响因素;然后,利用ISM法划分影响因素间的层次关系,得到安全文化水平是本质影响因素,规章制度完善和实施水平、安全投入水平、纠正问题水平等11个因素是过渡影响因素,违章指挥、违规作业是表层影响因素;最后,运用构建的BN模型反向诊断推理得到最大致因路径。研究结果可为人因视角下煤矿事故预防研究提供理论依据和决策支撑。 展开更多
关键词 煤矿事故 人因分析 灰色理论 决策试验与评价实验室法(DEMATEL) 解释结构模型(ISM) 贝叶斯网络(bn)
在线阅读 下载PDF
融合LDA-BN的船舶碰撞事故致因分析
16
作者 邵波 刘巧 +2 位作者 柯善钢 郑霞忠 贺语琴 《安全与环境学报》 北大核心 2025年第1期157-164,共8页
为探究船舶碰撞事故致因及其关系,提升航运安全管理水平,研究提出融合狄利克雷分布(Latent Dirichlet allocation,LDA)与贝叶斯网络(Bayesian Network,BN)的船舶碰撞事故致因分析方法。首先,运用LDA主题模型挖掘361份船舶碰撞事故调查报... 为探究船舶碰撞事故致因及其关系,提升航运安全管理水平,研究提出融合狄利克雷分布(Latent Dirichlet allocation,LDA)与贝叶斯网络(Bayesian Network,BN)的船舶碰撞事故致因分析方法。首先,运用LDA主题模型挖掘361份船舶碰撞事故调查报告,提取27个事故致因主题;其次,利用事故树方法厘清调查报告中致因间的影响关系,构建事故致因贝叶斯网络结构,使用期望最大化算法进行贝叶斯网络参数学习,确定各节点的条件概率,构建事故致因贝叶斯网络模型;最后,通过逆向推理分析、最大致因链分析及敏感性分析,找出导致船舶碰撞事故发生的主要致因因素。结果显示:安全管理不到位、疏忽瞭望、事发水域通航环境复杂是引发船舶碰撞事故可能性大的致因,航线保持不当、应急处置不当、违规穿越锚地是导致船舶碰撞事故发生的最敏感致因因素。 展开更多
关键词 安全社会工程 船舶碰撞 狄利克雷分布主题模型 贝叶斯网络 事故致因
原文传递
基于改进HFACS-DBN模型的建筑施工风险演化分析及应用研究
17
作者 李明海 马骁 +1 位作者 兰亚乐 何鑫 《工业安全与环保》 2025年第7期36-41,共6页
针对建筑施工领域中安全事故频发的问题,提出了一种基于动态贝叶斯网络(DBN)的安全风险分析与管控方法。首先,在人因分析分类系统(HFACS)的框架基础上,构建了适用于建筑施工的安全风险评价指标体系;然后,通过结合专家知识与数据驱动的方... 针对建筑施工领域中安全事故频发的问题,提出了一种基于动态贝叶斯网络(DBN)的安全风险分析与管控方法。首先,在人因分析分类系统(HFACS)的框架基础上,构建了适用于建筑施工的安全风险评价指标体系;然后,通过结合专家知识与数据驱动的方式,进一步建立了静态贝叶斯网络和DBN模型,从而实现了对建筑施工中安全风险的全面评估、预测以及动态演化分析。通过对关键致因链和敏感性节点的深入分析,研究制定了针对性的安全风险管控措施。案例研究表明,提出方法能够有效捕捉建筑施工安全风险的变化规律,指导实际安全管理实践,展现出良好的适用性和实用价值。研究成果为建筑施工安全管理提供了新的思路和方法,对促进建筑业安全生产具有重要的理论和实践意义。 展开更多
关键词 建筑施工 安全风险 动态贝叶斯网络 HFACS 管控措施
在线阅读 下载PDF
基于三支增量BNT的双极化气象雷达降水粒子分类
18
作者 李海 张雨婷 范懿 《火控雷达技术》 2025年第2期1-10,20,共11页
针对降水粒子分类过程中,使用静态数据集训练模型难以适应气象数据的动态变化,导致模型泛化性不足的问题,本文提出了一种基于三支增量贝叶斯网络(Bayesian Network,BNT)的双极化气象雷达降水粒子分类方法。该方法首先使用离散化和过采... 针对降水粒子分类过程中,使用静态数据集训练模型难以适应气象数据的动态变化,导致模型泛化性不足的问题,本文提出了一种基于三支增量贝叶斯网络(Bayesian Network,BNT)的双极化气象雷达降水粒子分类方法。该方法首先使用离散化和过采样处理后的初始训练数据集进行结构和参数学习,以构建初始BNT分类器。接着用其分类新增样本,引入三支决策思想,通过判断置信度和三支决策阈值的关系划分样本至不同的决策域;再从各决策域中依据不同策略提取增量样本追加至训练数据集中,更新模型参数。通过迭代的方式,动态的扩充训练数据集,直至完成所有新增数据样本的训练过程,获得三支增量BNT分类器。最终根据最大后验概率准则完成降水粒子分类。实验结果表明,该方法能够及时更新分类器从而提高其在不同天气条件下的泛化性和适应性,分类准确性也得到了一定改善。 展开更多
关键词 双极化气象雷达 降水粒子分类 三支决策 增量学习 贝叶斯网络
在线阅读 下载PDF
融合N-K-DBN模型的船舶自沉事故风险因素动态耦合分析
19
作者 崔秀芳 曾杰熙 +1 位作者 邵志鹏 安楠楠 《安全与环境学报》 北大核心 2025年第6期2080-2091,共12页
我国海上事故频发,当多个风险因素动态耦合时易超系统阈值导致船舶自沉事故,造成人员伤亡、经济损失和环境危害。因此,有必要定量分析影响船舶自沉风险演化特征之间的动态耦合关系,以识别造成事故的关键因素。采用N-K模型和动态贝叶斯网... 我国海上事故频发,当多个风险因素动态耦合时易超系统阈值导致船舶自沉事故,造成人员伤亡、经济损失和环境危害。因此,有必要定量分析影响船舶自沉风险演化特征之间的动态耦合关系,以识别造成事故的关键因素。采用N-K模型和动态贝叶斯网络(Dynamic Bayesian Network, DBN)研究船舶自沉风险因素的动态耦合特性,通过文本挖掘技术分析中国海事局(CMSA)公布的146起船舶自沉事故报告,对风险因素进行分类并探究其耦合机制。首先,利用N-K模型量化各风险因素间的耦合度和关系;然后,利用贝叶斯网络(BN)模型在N-K模型基础上进一步量化和优化了耦合风险,减少其主观性;最后,在BN结构上加入时间序列建立N-K-DBN风险动态耦合模型,通过风险概率分析、敏感性分析、正向推理、反向诊断和不确定性分析等,确定影响动态风险关联性的关键因素及催化因素,实现对航行中耦合风险的动态控制,并提出风险管理策略和防范措施,以提升海上安全。结果表明:船舶自沉事故的发生与耦合值呈正相关,耦合因素越多风险值越高,耦合相互作用越强。事故初期,人为因素和管理因素是船舶自沉事件的关键致因,其交叉耦合时风险更为显著。随着时间推移,船舶因素对事故的影响逐渐提高,更易与人为因素发生交叉耦合导致动态风险增强,而恶劣气象是触发船舶与其他因素耦合的催化因素,易诱发多因素的交叉耦合风险,导致事故发生概率增大。通过研究识别出安全意识淡薄、公司管理不到位、船舶故障、船舶不适航、船舶管理不当和公司未履责等是引发自沉事故的关键动态风险耦合因素,以及恶劣气象这一重要的动态风险耦合催化因素,这些因素须受到高度重视并对它们采取相应防范措施。 展开更多
关键词 安全工程 船舶自沉事故 N-K模型 动态贝叶斯网络 风险动态耦合分析
原文传递
基于TOPSIS-Bayesian机场服务质量评价
20
作者 李明捷 高嘉悦 《科技和产业》 2025年第2期33-38,共6页
为明确机场服务质量的影响因素及旅客对机场服务质量满意程度,提高机场服务质量,运用逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)与贝叶斯网络结合的评估模型,建立大型运输机场服务... 为明确机场服务质量的影响因素及旅客对机场服务质量满意程度,提高机场服务质量,运用逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)与贝叶斯网络结合的评估模型,建立大型运输机场服务质量评价指标体系。运用双向推理诊断模型评价机场服务质量,对机场满意度正向推理以及影响指标的反向敏感性诊断。对旅客机场服务质量满意度以及影响因素进行深入研究,并以某大型运输机场为例验证方法的可行性。研究结果表明,旅客对该机场的服务质量满意概率为0.67,一般满意概率为0.21。反向诊断得到行李提取系统、进出机场综合交通与城市连接的便利性、安检服务效率等影响因素敏感性较高。为机场科学制定提升服务质量措施提供理论基础。 展开更多
关键词 运输机场 服务质量 旅客满意度 TOPSIS 贝叶斯网络
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部