Real-world study is valuable for traditional Chinese medicine.However,there are no gold standards of statistical approaches for analyzing data from real-world study of traditional Chinese medicine.With the development...Real-world study is valuable for traditional Chinese medicine.However,there are no gold standards of statistical approaches for analyzing data from real-world study of traditional Chinese medicine.With the development of computer technology,researchers have increasingly paid attention to Bayesian statistics in the biomedical field.In present study,real-world study and Bayesian statistics were introduced.It was discussed that why and when to use Bayesian analysis and the challenge in the real-world study of traditional Chinese medicine.展开更多
Background:The short term forecasts regarding different parameters of the COVID-19 are very important to make informed decisions.However,majority of the earlier contributions have used classical time series models,suc...Background:The short term forecasts regarding different parameters of the COVID-19 are very important to make informed decisions.However,majority of the earlier contributions have used classical time series models,such as auto regressive integrated moving average(ARIMA)models,to obtain the said forecasts for Iran and its neighbors.In addition,the impacts of lifting the lockdowns in the said countries have not been studied.The aim of this paper is to propose more flexible Bayesian structural time series(BSTS)models for forecasting the future trends of the COVID-19 in Iran and its neighbors,and to compare the predictive power of the BSTS models with frequently used ARIMA models.The paper also aims to investigate the casual impacts of lifting the lockdown in the targeted countries using proposed models.Methods:We have proposed BSTS models to forecast the patterns of this pandemic in Iran and its neighbors.The predictive power of the proposed models has been compared with ARIMA models using different forecast accuracy criteria.We have also studied the causal impacts of resuming commercial/social activities in these countries using intervention analysis under BSTS models.The forecasts for next thirty days were obtained by using the data from March 16 to July 22,2020.These data have been obtained from Our World in Data and Humanitarian Data Exchange(HDX).All the numerical results have been obtained using R software.Results:Different measures of forecast accuracy advocated that forecasts under BSTS models were better than those under ARIMA models.Our forecasts suggested that the active numbers of cases are expected to decrease in Iran and its neighbors,except Afghanistan.However,the death toll is expected to increase at more pace in majority of these countries.The resuming of commercial/social activities in these countries has accelerated the surges in number of positive cases.Conclusions:The serious efforts would be needed to make sure that these expected figures regarding active number of cases come true.Iran and its neighbors need to improve their extensive healthcare infrastructure to cut down the higher expected death toll.Finally,these countries should develop and implement the strict SOPs for the commercial activities in order to prevent the expected second wave of the pandemic.展开更多
Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,...Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.展开更多
patients with PPF.TCM treatments are typically diverse and individualized,requiring urgent development of efficient and precise design strategies to identify effective treatment options.We designed an innovative Bayes...patients with PPF.TCM treatments are typically diverse and individualized,requiring urgent development of efficient and precise design strategies to identify effective treatment options.We designed an innovative Bayesian adaptive two-stage trial,hoping to provide new ideas for the rapid evaluation of the effectiveness of TCM in PPF.An open-label,two-stage,adaptive Bayesian randomized controlled trial will be conducted in China.Based on Bayesian methods,the trial will employ response-adaptive randomization to allocate patients to study groups based on data collected over the course of the trial.The adaptive Bayesian trial design will employ a Bayesian hierarchical model with“stopping”and“continuation”criteria once a predetermined posterior probability of superiority or futility and a decision threshold are reached.The trial can be implemented more efficiently by sharing the master protocol and organizational management mechanisms of the sub-trial we have implemented.The primary patient-reported outcome is a change in the Leicester Cough Questionnaire score,reflecting an improvement in cough-specific quality of life.The adaptive Bayesian trial design may be a promising method to facilitate the rapid clinical evaluation of TCM effectiveness for PPF,and will provide an example for how to evaluate TCM effectiveness in rare and refractory diseases.However,due to the complexity of the trial implementation,sufficient simulation analysis by professional statistical analysts is required to construct a Bayesian response-adaptive randomization procedure for timely response.Moreover,detailed standard operating procedures need to be developed to ensure the feasibility of the trial implementation.展开更多
Recently,machine learning has become a powerful tool for predicting nuclear charge radius RC,providing novel insights into complex physical phenomena.This study employs a continuous Bayesian probability(CBP)estimator ...Recently,machine learning has become a powerful tool for predicting nuclear charge radius RC,providing novel insights into complex physical phenomena.This study employs a continuous Bayesian probability(CBP)estimator and Bayesian model averaging(BMA)to optimize the predictions of RCfrom sophisticated theoretical models.The CBP estimator treats the residual between the theoretical and experimental values of RCas a continuous variable and derives its posterior probability density function(PDF)from Bayesian theory.The BMA method assigns weights to models based on their predictive performance for benchmark nuclei,thereby accounting for the unique strengths of each model.In global optimization,the CBP estimator improved the predictive accuracy of the three theoretical models by approximately 60%.The extrapolation analyses consistently achieved an improvement rate of approximately 45%,demonstrating the robustness of the CBP estimator.Furthermore,the combination of the CBP and BMA methods reduces the standard deviation to below 0.02 fm,effectively reproducing the pronounced shell effects on RCof the Ca and Sr isotope chains.The studies in this paper propose an efficient method to accurately describe RCof unknown nuclei,with potential applications in research on other nuclear properties.展开更多
In order to classify the minimal hepatic encephalopathy (MHE) patients from healthy controls, the independent component analysis (ICA) is used to generate the default mode network (DMN) from resting-state functi...In order to classify the minimal hepatic encephalopathy (MHE) patients from healthy controls, the independent component analysis (ICA) is used to generate the default mode network (DMN) from resting-state functional magnetic resonance imaging (fMRI). Then a Bayesian voxel- wised method, graphical-model-based multivariate analysis (GAMMA), is used to explore the associations between abnormal functional integration within DMN and clinical variable. Without any prior knowledge, five machine learning methods, namely, support vector machines (SVMs), classification and regression trees ( CART ), logistic regression, the Bayesian network, and C4.5, are applied to the classification. The functional integration patterns were alternative within DMN, which have the power to predict MHE with an accuracy of 98%. The GAMMA method generating functional integration patterns within DMN can become a simple, objective, and common imaging biomarker for detecting MIIE and can serve as a supplement to the existing diagnostic methods.展开更多
Background:There is the limited evidence available from randomized controlled trials on the dose-response relationship of NiuHuangJiangYa capsule for hypertension.The objective of this study is to investigate the dose...Background:There is the limited evidence available from randomized controlled trials on the dose-response relationship of NiuHuangJiangYa capsule for hypertension.The objective of this study is to investigate the dose-response relationship of NiuHuangJiangYa capsule for hypertension based on multiple N-of-1 trials.Methods:This study was a secondary analysis of the data from a series of N-of-1 trials examining the efficacy of high-dose versus low-dose NiuHuangJiangYa capsule for hypertension.Hierarchical Bayesian models were used to aggregate these N-of-1 trials for estimating the population and individual treatment effects synchronously.Results:It showed that overall population estimates of the posterior mean difference in Systolic Blood Pressure reduction,Diastolic Blood Pressure reduction,and traditional Chinese medicine symptom score reduction were 3.18 mmHg(95%CIs:-4.69 to 9.04,posterior probability(>0):83.33%),0.8636 mmHg(95%CIs:-5.19 to 6.79,posterior probability(>0):63.38%),and 0.8384(95%CIs:-2.21 to 3.84,posterior probability(>0):77.05%)respectively.Individual posterior mean difference ranged from 1.237 to 5.628 with posterior probability(>0)ranging from 63.63%to 92.95%in Systolic Blood Pressure reduction,-0.714 to 3.423 with posterior probability(>0)ranging from 43.03%to 84.04%in Diastolic Blood Pressure reduction,and-0.5179 to 2.733 with posterior probability(>0)ranging from 27.02%to 97.73%in traditional Chinese medicine symptom score reduction.Conclusion:The efficacy of high-dose versus low-dose NiuHuangJiangYa capsule for hypertension may be various across patients.Further studies are warranted to investigate these findings.Moreover,Bayesian N-of-1 trial may be helpful to explore the optimal and personalized dosage of anti-hypertensive drugs.展开更多
Respiratory diseases and air pollution are the goals of many scientific works, but studies of the relations between these diseases and cane field burning pollution are still not well studied in the literature. In this...Respiratory diseases and air pollution are the goals of many scientific works, but studies of the relations between these diseases and cane field burning pollution are still not well studied in the literature. In this work, we consider the times between days of extrapolations of the number of daily hospitalizations due to respiratory diseases as our data. To analyze this data set, we introduce different statistical models related to burning focus pollution and their relations with the counting of hospitalizations due to respiratory diseases. Under a Bayesian approach and with the help of the free available WinBUGS software, we get posterior summaries of interest using standard MCMC (Markov Chain Monte Carlo) methods.展开更多
Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the ...Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the Multi-scale Terrestrial Model Intercomparison Project using Bayesian model averaging(BMA).The spatial anomalies of detrended BMA GPP during the growing seasons of typical El Nino years indicated that GPP response to El Nino varies with Pacific Decadal Oscillation(PDO) phases: when the PDO was in the cool phase,it was likely that GPP was greater in northern China(32°–38°N,111°–122°E) and less in the Yangtze River valley(28°–32°N,111°–122°E);in contrast,when PDO was in the warm phase,the GPP anomalies were usually reversed in these two regions.The consistent spatiotemporal pattern and high partial correlation revealed that rainfall dominated this phenomenon.The previously published findings on how El Nino during different phases of PDO affecting rainfall in eastern China make the statistical relationship between GPP and El Nino in this study theoretically credible.This paper not only introduces an effective way to use BMA in grids that have mixed plant function types,but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Nino and PDO.展开更多
Landslide hazard mapping is a fundamental tool for disaster management activities in Loess terrains. Aiming at major issues with these landslide hazard assessment methods based on Naive Bayesian classification techniq...Landslide hazard mapping is a fundamental tool for disaster management activities in Loess terrains. Aiming at major issues with these landslide hazard assessment methods based on Naive Bayesian classification technique, which is difficult in quantifying those uncertain triggering factors, the main purpose of this work is to evaluate the predictive power of landslide spatial models based on uncertain Naive Bayesian classification method in Baota district of Yan'an city in Shaanxi province, China. Firstly, thematic maps representing various factors that are related to landslide activity were generated. Secondly, by using field data and GIS techniques, a landslide hazard map was performed. To improve the accuracy of the resulting landslide hazard map, the strategies were designed, which quantified the uncertain triggering factor to design landslide spatial models based on uncertain Naive Bayesian classification method named NBU algorithm. The accuracies of the area under relative operating characteristics curves(AUC) in NBU and Naive Bayesian algorithm are 87.29% and 82.47% respectively. Thus, NBU algorithm can be used efficiently for landslide hazard analysis and might be widely used for the prediction of various spatial events based on uncertain classification technique.展开更多
As an important factor in evaluating service,QoS(Quality of Service) has drawn more and more concerns with the rapid increasing of Web services. However,due to the great volatility of services in Mobile Internet envir...As an important factor in evaluating service,QoS(Quality of Service) has drawn more and more concerns with the rapid increasing of Web services. However,due to the great volatility of services in Mobile Internet environments,such as internet of vehicles,Web services often do not work as announced and thus cause unacceptable problems. QoS prediction can avoid failure before it takes place,which is considered a more effective way to assure quality. However,Current QoS prediction approaches neither consider the highly dynamic of Web services,nor maintain good prediction performance all the time. Consequently we propose a novel Bayesian combinational model to predict QoS by continuously adjusting credit values of the basic models so as to keep good prediction accuracy. QoS attributes such as response time,throughput and reliability are used to validate the proposed model. Experimental results show that the model can provide stable prediction results in Mobile Internet environments.展开更多
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s...To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.展开更多
Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most exist...Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most existing methods, the number of layers is assumed to be known prior to the process of inversion. However, improper assignment of this parameter leads to erroneous inversion results. A Bayesian nonparametric method for Rayleigh wave inversion is proposed herein to address this problem. In this method, each model class represents a particular number of layers with unknown S-wave velocity and thickness of each layer. As a result, determination of the number of layers is equivalent to selection of the most applicable model class. Regarding each model class, the optimization search of S-wave velocity and thickness of each layer is implemented by using a genetic algorithm. Then, each model class is assessed in view of its efficiency under the Bayesian framework and the most efficient class is selected. Simulated and actual examples verify that the proposed Bayesian nonparametric approach is reliable and efficient for Rayleigh wave inversion, especially for its capability to determine the number of layers.展开更多
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t...Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.展开更多
Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating a...Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.展开更多
This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study are...This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study area were analyzed with the HB model.The generalized extreme value(GEV)distribution was selected as the extreme flood distribution,and the GEV distribution location and scale parameters were spatially modeled through a regression approach with the drainage area as a covariate.The Markov chain Monte Carlo(MCMC)method with Gibbs sampling was employed to calculate the posterior distribution in the HB model.The results showed that the proposed HB model provided satisfactory Bayesian credible intervals for flood quantiles,while the traditional delta method could not provide reliable uncertainty estimations for large flood quantiles,due to the fact that the lower confidence bounds tended to decrease as the return periods increased.Furthermore,the HB model for regional analysis allowed for a reduction in the value of some restrictive assumptions in the traditional index flood method,such as the homogeneity region assumption and the scale invariance assumption.The HB model can also provide an uncertainty band of flood quantile prediction at a poorly gauged or ungauged site,but the index flood method with L-moments does not demonstrate this uncertainty directly.Therefore,the HB model is an effective method of implementing the flexible local and regional frequency analysis scheme,and of quantifying the associated predictive uncertainty.展开更多
The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simu...The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64.展开更多
This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from tra...This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.展开更多
The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model ph...The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data.展开更多
Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan ...Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21^(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease.展开更多
基金the project of National Natural Science Foundation of China(grant numbers 81273935,81303093,81602930).
文摘Real-world study is valuable for traditional Chinese medicine.However,there are no gold standards of statistical approaches for analyzing data from real-world study of traditional Chinese medicine.With the development of computer technology,researchers have increasingly paid attention to Bayesian statistics in the biomedical field.In present study,real-world study and Bayesian statistics were introduced.It was discussed that why and when to use Bayesian analysis and the challenge in the real-world study of traditional Chinese medicine.
文摘Background:The short term forecasts regarding different parameters of the COVID-19 are very important to make informed decisions.However,majority of the earlier contributions have used classical time series models,such as auto regressive integrated moving average(ARIMA)models,to obtain the said forecasts for Iran and its neighbors.In addition,the impacts of lifting the lockdowns in the said countries have not been studied.The aim of this paper is to propose more flexible Bayesian structural time series(BSTS)models for forecasting the future trends of the COVID-19 in Iran and its neighbors,and to compare the predictive power of the BSTS models with frequently used ARIMA models.The paper also aims to investigate the casual impacts of lifting the lockdown in the targeted countries using proposed models.Methods:We have proposed BSTS models to forecast the patterns of this pandemic in Iran and its neighbors.The predictive power of the proposed models has been compared with ARIMA models using different forecast accuracy criteria.We have also studied the causal impacts of resuming commercial/social activities in these countries using intervention analysis under BSTS models.The forecasts for next thirty days were obtained by using the data from March 16 to July 22,2020.These data have been obtained from Our World in Data and Humanitarian Data Exchange(HDX).All the numerical results have been obtained using R software.Results:Different measures of forecast accuracy advocated that forecasts under BSTS models were better than those under ARIMA models.Our forecasts suggested that the active numbers of cases are expected to decrease in Iran and its neighbors,except Afghanistan.However,the death toll is expected to increase at more pace in majority of these countries.The resuming of commercial/social activities in these countries has accelerated the surges in number of positive cases.Conclusions:The serious efforts would be needed to make sure that these expected figures regarding active number of cases come true.Iran and its neighbors need to improve their extensive healthcare infrastructure to cut down the higher expected death toll.Finally,these countries should develop and implement the strict SOPs for the commercial activities in order to prevent the expected second wave of the pandemic.
基金This study was supported by the National Natural Science Foundation of China(42261008,41971034)the Natural Science Foundation of Gansu Province,China(22JR5RA074).
文摘Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.
基金supported by National Natural Science Foundation of China(No.81973713)。
文摘patients with PPF.TCM treatments are typically diverse and individualized,requiring urgent development of efficient and precise design strategies to identify effective treatment options.We designed an innovative Bayesian adaptive two-stage trial,hoping to provide new ideas for the rapid evaluation of the effectiveness of TCM in PPF.An open-label,two-stage,adaptive Bayesian randomized controlled trial will be conducted in China.Based on Bayesian methods,the trial will employ response-adaptive randomization to allocate patients to study groups based on data collected over the course of the trial.The adaptive Bayesian trial design will employ a Bayesian hierarchical model with“stopping”and“continuation”criteria once a predetermined posterior probability of superiority or futility and a decision threshold are reached.The trial can be implemented more efficiently by sharing the master protocol and organizational management mechanisms of the sub-trial we have implemented.The primary patient-reported outcome is a change in the Leicester Cough Questionnaire score,reflecting an improvement in cough-specific quality of life.The adaptive Bayesian trial design may be a promising method to facilitate the rapid clinical evaluation of TCM effectiveness for PPF,and will provide an example for how to evaluate TCM effectiveness in rare and refractory diseases.However,due to the complexity of the trial implementation,sufficient simulation analysis by professional statistical analysts is required to construct a Bayesian response-adaptive randomization procedure for timely response.Moreover,detailed standard operating procedures need to be developed to ensure the feasibility of the trial implementation.
基金supported by the National Natural Science Foundation of China(Nos.12475135,12035011,and 12475119)the Shandong Provincial Natural Science Foundation,China(No.ZR2020MA096)the Fundamental Research Funds for the Central Universities(No.22CX03017A)。
文摘Recently,machine learning has become a powerful tool for predicting nuclear charge radius RC,providing novel insights into complex physical phenomena.This study employs a continuous Bayesian probability(CBP)estimator and Bayesian model averaging(BMA)to optimize the predictions of RCfrom sophisticated theoretical models.The CBP estimator treats the residual between the theoretical and experimental values of RCas a continuous variable and derives its posterior probability density function(PDF)from Bayesian theory.The BMA method assigns weights to models based on their predictive performance for benchmark nuclei,thereby accounting for the unique strengths of each model.In global optimization,the CBP estimator improved the predictive accuracy of the three theoretical models by approximately 60%.The extrapolation analyses consistently achieved an improvement rate of approximately 45%,demonstrating the robustness of the CBP estimator.Furthermore,the combination of the CBP and BMA methods reduces the standard deviation to below 0.02 fm,effectively reproducing the pronounced shell effects on RCof the Ca and Sr isotope chains.The studies in this paper propose an efficient method to accurately describe RCof unknown nuclei,with potential applications in research on other nuclear properties.
基金The National Natural Science Foundation of China(No.8123003481271739+2 种基金81501453)the Special Program of Medical Science of Jiangsu Province(No.BL2013029)the Natural Science Foundation of Jiangsu Province(No.BK20141342)
文摘In order to classify the minimal hepatic encephalopathy (MHE) patients from healthy controls, the independent component analysis (ICA) is used to generate the default mode network (DMN) from resting-state functional magnetic resonance imaging (fMRI). Then a Bayesian voxel- wised method, graphical-model-based multivariate analysis (GAMMA), is used to explore the associations between abnormal functional integration within DMN and clinical variable. Without any prior knowledge, five machine learning methods, namely, support vector machines (SVMs), classification and regression trees ( CART ), logistic regression, the Bayesian network, and C4.5, are applied to the classification. The functional integration patterns were alternative within DMN, which have the power to predict MHE with an accuracy of 98%. The GAMMA method generating functional integration patterns within DMN can become a simple, objective, and common imaging biomarker for detecting MIIE and can serve as a supplement to the existing diagnostic methods.
基金This study was supported by the National Natural Science Foundation of China.(No.81973705).
文摘Background:There is the limited evidence available from randomized controlled trials on the dose-response relationship of NiuHuangJiangYa capsule for hypertension.The objective of this study is to investigate the dose-response relationship of NiuHuangJiangYa capsule for hypertension based on multiple N-of-1 trials.Methods:This study was a secondary analysis of the data from a series of N-of-1 trials examining the efficacy of high-dose versus low-dose NiuHuangJiangYa capsule for hypertension.Hierarchical Bayesian models were used to aggregate these N-of-1 trials for estimating the population and individual treatment effects synchronously.Results:It showed that overall population estimates of the posterior mean difference in Systolic Blood Pressure reduction,Diastolic Blood Pressure reduction,and traditional Chinese medicine symptom score reduction were 3.18 mmHg(95%CIs:-4.69 to 9.04,posterior probability(>0):83.33%),0.8636 mmHg(95%CIs:-5.19 to 6.79,posterior probability(>0):63.38%),and 0.8384(95%CIs:-2.21 to 3.84,posterior probability(>0):77.05%)respectively.Individual posterior mean difference ranged from 1.237 to 5.628 with posterior probability(>0)ranging from 63.63%to 92.95%in Systolic Blood Pressure reduction,-0.714 to 3.423 with posterior probability(>0)ranging from 43.03%to 84.04%in Diastolic Blood Pressure reduction,and-0.5179 to 2.733 with posterior probability(>0)ranging from 27.02%to 97.73%in traditional Chinese medicine symptom score reduction.Conclusion:The efficacy of high-dose versus low-dose NiuHuangJiangYa capsule for hypertension may be various across patients.Further studies are warranted to investigate these findings.Moreover,Bayesian N-of-1 trial may be helpful to explore the optimal and personalized dosage of anti-hypertensive drugs.
文摘Respiratory diseases and air pollution are the goals of many scientific works, but studies of the relations between these diseases and cane field burning pollution are still not well studied in the literature. In this work, we consider the times between days of extrapolations of the number of daily hospitalizations due to respiratory diseases as our data. To analyze this data set, we introduce different statistical models related to burning focus pollution and their relations with the counting of hospitalizations due to respiratory diseases. Under a Bayesian approach and with the help of the free available WinBUGS software, we get posterior summaries of interest using standard MCMC (Markov Chain Monte Carlo) methods.
基金supported by the National Key Research and Development Program of China (Grant Nos.2016YFA0602501 and 2018YFA0606004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA20040301 and XDA20020201)。
文摘Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the Multi-scale Terrestrial Model Intercomparison Project using Bayesian model averaging(BMA).The spatial anomalies of detrended BMA GPP during the growing seasons of typical El Nino years indicated that GPP response to El Nino varies with Pacific Decadal Oscillation(PDO) phases: when the PDO was in the cool phase,it was likely that GPP was greater in northern China(32°–38°N,111°–122°E) and less in the Yangtze River valley(28°–32°N,111°–122°E);in contrast,when PDO was in the warm phase,the GPP anomalies were usually reversed in these two regions.The consistent spatiotemporal pattern and high partial correlation revealed that rainfall dominated this phenomenon.The previously published findings on how El Nino during different phases of PDO affecting rainfall in eastern China make the statistical relationship between GPP and El Nino in this study theoretically credible.This paper not only introduces an effective way to use BMA in grids that have mixed plant function types,but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Nino and PDO.
基金Projects(41362015,51164012) supported by the National Natural Science Foundation of ChinaProject(2012AA061901) supported by the National High-tech Research and Development Program of China
文摘Landslide hazard mapping is a fundamental tool for disaster management activities in Loess terrains. Aiming at major issues with these landslide hazard assessment methods based on Naive Bayesian classification technique, which is difficult in quantifying those uncertain triggering factors, the main purpose of this work is to evaluate the predictive power of landslide spatial models based on uncertain Naive Bayesian classification method in Baota district of Yan'an city in Shaanxi province, China. Firstly, thematic maps representing various factors that are related to landslide activity were generated. Secondly, by using field data and GIS techniques, a landslide hazard map was performed. To improve the accuracy of the resulting landslide hazard map, the strategies were designed, which quantified the uncertain triggering factor to design landslide spatial models based on uncertain Naive Bayesian classification method named NBU algorithm. The accuracies of the area under relative operating characteristics curves(AUC) in NBU and Naive Bayesian algorithm are 87.29% and 82.47% respectively. Thus, NBU algorithm can be used efficiently for landslide hazard analysis and might be widely used for the prediction of various spatial events based on uncertain classification technique.
基金supported by National Natural Science Foundation of China (61572171,61202097,61202136)Research Fund for the Doctoral Program of Higher Education of China (20120094120009)+2 种基金Fundamental Research Funds for the Central Universities of China (B15020191)the national college students innovation training program (No.201511460012)by Jiangsu Province,and key special funds of efficient utilization of water resources (No.2016YFC0402710)
文摘As an important factor in evaluating service,QoS(Quality of Service) has drawn more and more concerns with the rapid increasing of Web services. However,due to the great volatility of services in Mobile Internet environments,such as internet of vehicles,Web services often do not work as announced and thus cause unacceptable problems. QoS prediction can avoid failure before it takes place,which is considered a more effective way to assure quality. However,Current QoS prediction approaches neither consider the highly dynamic of Web services,nor maintain good prediction performance all the time. Consequently we propose a novel Bayesian combinational model to predict QoS by continuously adjusting credit values of the basic models so as to keep good prediction accuracy. QoS attributes such as response time,throughput and reliability are used to validate the proposed model. Experimental results show that the model can provide stable prediction results in Mobile Internet environments.
基金funding from the Paul ScherrerInstitute,Switzerland through the NES/GFA-ABE Cross Project。
文摘To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation.
基金Science and Technology Development Fund of the Macao SAR under research grant SKL-IOTSC-2018-2020the Research Committee of University of Macao under Research Grant MYRG2016-00029-FST。
文摘Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most existing methods, the number of layers is assumed to be known prior to the process of inversion. However, improper assignment of this parameter leads to erroneous inversion results. A Bayesian nonparametric method for Rayleigh wave inversion is proposed herein to address this problem. In this method, each model class represents a particular number of layers with unknown S-wave velocity and thickness of each layer. As a result, determination of the number of layers is equivalent to selection of the most applicable model class. Regarding each model class, the optimization search of S-wave velocity and thickness of each layer is implemented by using a genetic algorithm. Then, each model class is assessed in view of its efficiency under the Bayesian framework and the most efficient class is selected. Simulated and actual examples verify that the proposed Bayesian nonparametric approach is reliable and efficient for Rayleigh wave inversion, especially for its capability to determine the number of layers.
文摘Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.
基金supported by The Technology Innovation Team(Tianshan Innovation Team),Innovative Team for Efficient Utilization of Water Resources in Arid Regions(2022TSYCTD0001)the National Natural Science Foundation of China(42171269)the Xinjiang Academician Workstation Cooperative Research Project(2020.B-001).
文摘Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.
基金supported by the National Natural Science Foundation of China(Grants No.51779074 and 41371052)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501059)+3 种基金the National Key Research and Development Program of China(Grant No.2017YFC0404304)the Jiangsu Water Conservancy Science and Technology Project(Grant No.2017027)the Program for Outstanding Young Talents in Colleges and Universities of Anhui Province(Grant No.gxyq2018143)the Natural Science Foundation of Wanjiang University of Technology(Grant No.WG18030)
文摘This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study area were analyzed with the HB model.The generalized extreme value(GEV)distribution was selected as the extreme flood distribution,and the GEV distribution location and scale parameters were spatially modeled through a regression approach with the drainage area as a covariate.The Markov chain Monte Carlo(MCMC)method with Gibbs sampling was employed to calculate the posterior distribution in the HB model.The results showed that the proposed HB model provided satisfactory Bayesian credible intervals for flood quantiles,while the traditional delta method could not provide reliable uncertainty estimations for large flood quantiles,due to the fact that the lower confidence bounds tended to decrease as the return periods increased.Furthermore,the HB model for regional analysis allowed for a reduction in the value of some restrictive assumptions in the traditional index flood method,such as the homogeneity region assumption and the scale invariance assumption.The HB model can also provide an uncertainty band of flood quantile prediction at a poorly gauged or ungauged site,but the index flood method with L-moments does not demonstrate this uncertainty directly.Therefore,the HB model is an effective method of implementing the flexible local and regional frequency analysis scheme,and of quantifying the associated predictive uncertainty.
基金Project supported by the China Special Fund for Meteorological Research in the Public Interest(No.GYHY201306045)the National Natural Science Foundation of China(Nos.41305066 and41575096)
文摘The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64.
基金Project supported by the National Natural Science Foundation ofChina (No. 40101014) and by the Science and technology Committee of Zhejiang Province (No. 001110445) China
文摘This article presents two approaches for automated building of knowledge bases of soil resources mapping. These methods used decision tree and Bayesian predictive modeling, respectively to generate knowledge from training data. With these methods, building a knowledge base for automated soil mapping is easier than using the conventional knowledge acquisition approach. The knowledge bases built by these two methods were used by the knowledge classifier for soil type classification of the Longyou area, Zhejiang Province, China using TM bi-temporal imageries and GIS data. To evaluate the performance of the resultant knowledge bases, the classification results were compared to existing soil map based on field survey. The accuracy assessment and analysis of the resultant soil maps suggested that the knowledge bases built by these two methods were of good quality for mapping distribution model of soil classes over the study area.
基金supported by the National Natural Science Foundation of China(Grant Nos.41405083 and 91437220)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3098)+1 种基金the Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-DQC012)the Fund Project for The Education Department of Hunan Province(Grant No.16A234)
文摘The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data.
基金supported by the Thousand Youth Talents Plan(Xinjiang Project)the National Natural Science Foundation of China(41630859)the West Light Foundation of Chinese Academy of Sciences(2016QNXZB12)
文摘Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21^(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease.