期刊文献+
共找到335篇文章
< 1 2 17 >
每页显示 20 50 100
Application of Bayesian Dynamic Forecast in Anomaly Detection 被引量:1
1
作者 阎慧 曹元大 《Journal of Beijing Institute of Technology》 EI CAS 2005年第1期41-44,共4页
A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers... A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers of large-scale intrusion detection systems. In order to improve the efficiency and veracity of intrusion analysis, the intrusion intensity values are picked from alert data and Bayesian dynamic forecast method is used to detect anomaly. The experiments show that the new method is effective on detecting macroscopical anomaly in large-scale intrusion detection systems. 展开更多
关键词 intrusion detection system (IDS) bayesian dynamic forecast anomaly detection
在线阅读 下载PDF
A Study on Forecasting System of Patent Registration Based on Bayesian Network
2
作者 Gabjo Kim Sangsung Park +3 位作者 Sunghae Jun Yosup Kim Dongjin Kang Dongsik Jang 《Intelligent Information Management》 2012年第5期284-290,共7页
Recently the importance of intellectual property has been increased. There has been various ways of research on analy- sis of companies, forecast of technology and so on through patents and many investments of money a... Recently the importance of intellectual property has been increased. There has been various ways of research on analy- sis of companies, forecast of technology and so on through patents and many investments of money and time. Unlike traditional method of patent analysis such as company analysis, forecasting technologies, this research is to suggest the ways to forecast registration and rejection of patents which help minimize the efforts to register patents. To do so, in- formation such as inventors, applicants, application date, and IPC codes were extracted to be used as input variables for analyzing Bayesian network. Especially, among various forms of Bayesian network, we used Tree Augmented NBN (TAN) to forecast registration and rejection of patent. This is because, TAN was assumed to have dependence between variables. As a result of this Bayesian network, it was shown that there are nearly more than 80% of accuracy to fore- cast registration and rejection of patents. Therefore, we expect the minimization of time and cost of registration by forecasting registration and rejection of R&D patent through this research. 展开更多
关键词 bayesian Network PATENT REGISTRATION Tree AUGMENTED NBN forecast
暂未订购
Short Term Forecasting Performances of Classical VAR and Sims-Zha Bayesian VAR Models for Time Series with Collinear Variables and Correlated Error Terms
3
作者 M. O. Adenomon V. A. Michael O. P. Evans 《Open Journal of Statistics》 2015年第7期742-753,共12页
Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. ... Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. This simulation study considered the performances of the classical VAR and Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error terms. The results from 10,000 iteration revealed that the BVAR models are excellent for time series length of T=8 for all levels of collinearity while the classical VAR is effective for time series length of T=16 for all collinearity levels except when ρ = -0.9 and ρ = -0.95. We therefore recommended that for effective short term forecasting, the time series length, forecasting horizon and the collinearity level should be considered. 展开更多
关键词 Short term forecasting Vector Autoregressive (VAR) bayesian VAR (BVAR) Sims-Zha Prior COLLINEARITY Error Terms
暂未订购
Bayesian反馈法研究左氧氟沙星在呼吸系统感染患者中药动学及药效学 被引量:4
4
作者 张沂 鲍燕燕 +1 位作者 欧敏 夏东亚 《中国抗生素杂志》 CAS CSCD 北大核心 2005年第11期689-692,共4页
目的研究两种给药方案中左氧氟沙星在呼吸系统感染患者中药动学特性.方法患者静脉输注左氧氟沙星200mg,一天二次(组1)或400mg,一天一次(组2),高效液相色谱法测定血中左氧氟沙星浓度;Bayesian反馈法拟合药动学参数.结果根据药-时数据得到... 目的研究两种给药方案中左氧氟沙星在呼吸系统感染患者中药动学特性.方法患者静脉输注左氧氟沙星200mg,一天二次(组1)或400mg,一天一次(组2),高效液相色谱法测定血中左氧氟沙星浓度;Bayesian反馈法拟合药动学参数.结果根据药-时数据得到组1和组2中左氧氟沙星峰浓度(Cmax)分别为(2.80±0.29)和(5.27±0.68)mg/L;AUC0~24分别为(30.1 7±4.06)和(37.81±7.50)(mg·h)/L;消除半衰期t1/2β为(7.104±0.36)和(7.37±0.21)h;表观分布容积(Vd)为(96.75±16.82)和(101.20±26.01)L;中央室分布容积(Vc)为(66.45±6.76)和(64.63±7.41)L;血清清除率(C1)为(148.47±41.43)和(142.04+25.40)ml/h.统计学处理结果表明两组间的Cmax和AUC0~24值有显著性差异(P<0.001),t1/2β、Vd、Vc和Cl无差异(P>0.05).药动学和药效学研究结果显示,两种给药方案中LVLX对于肺炎克雷伯菌、肠杆菌、变形菌、β-溶血链球菌、不动杆菌、嗜血杆菌、肺炎链球菌和厌氧菌的AUC0~24/MIC90值均大于30;对肺炎克雷伯菌和变形菌的AUC0~24/MIC90值大于240.结论组2的Cmax和AUC0~24/MIC90值均明显高于组1,且两组均未发生不良反应,组2的给药方案更方便. 展开更多
关键词 左氧氟沙星 药动学 药效学 bayesian反馈法
暂未订购
Nash Model Parameter Uncertainty Analysis by AM-MCMC Based on BFS and Probabilistic Flood Forecasting 被引量:4
5
作者 XING Zhenxiang RUI Xiaofang +2 位作者 FU Qiang JIYi ZHU Shijiang 《Chinese Geographical Science》 SCIE CSCD 2011年第1期74-83,共10页
A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which fu... A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision. 展开更多
关键词 bayesian forecasting System parameter uncertainty Markov Chain Monte Carlo simulation Adaptive Metropolis method probabilistic flood forecasting
在线阅读 下载PDF
改进Bayesian后验比的异常风速值检测方法 被引量:2
6
作者 陈伟 吴布托 +1 位作者 裴喜平 王懿喆 《电网与清洁能源》 北大核心 2017年第2期104-111,116,共9页
风电场运行数据中含有异常风速值,为了优化风电数据的质量,提出了组合预测与Bayesian后验比的异常值检测方法。为了降低预测误差,先对风速序列建立Adaboost-BP网络和EMD-LV-SVM的组合预测模型,利用预测值与测量值的偏差得到含有粗大误... 风电场运行数据中含有异常风速值,为了优化风电数据的质量,提出了组合预测与Bayesian后验比的异常值检测方法。为了降低预测误差,先对风速序列建立Adaboost-BP网络和EMD-LV-SVM的组合预测模型,利用预测值与测量值的偏差得到含有粗大误差的残差序列;为了提高检测方法的可靠性,采用Bayesian后验比的检验方法识别残差序列中粗大误差,从而确定异常风速值的位置,并利用ARIMA方法修正异常风速值。RBF预测结果表明,所提方法能准确识别异常值,从而提高了风电场短期风速预测精度。 展开更多
关键词 异常风速值检测 组合预测模型 残差分 bayesian后验比
在线阅读 下载PDF
基于Bayesian-LSSVM和残差修正的用户短期需水量预测 被引量:3
7
作者 吴珊 宋凌硕 +1 位作者 侯本伟 寇晓霞 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2019年第8期88-96,共9页
为有效改善供水管网短期需水量预测模型在预测精度和稳定性方面存在的不足,提出在短期需水量预测模型基础上叠加残差预测模型的组合预测建模方法.首先采用贝叶斯最小二乘支持向量机法(Bayesian-LSSVM)建立管网用户需水量时间序列预测模... 为有效改善供水管网短期需水量预测模型在预测精度和稳定性方面存在的不足,提出在短期需水量预测模型基础上叠加残差预测模型的组合预测建模方法.首先采用贝叶斯最小二乘支持向量机法(Bayesian-LSSVM)建立管网用户需水量时间序列预测模型(BL模型),得到需水量预测初始值;对BL模型得到的需水量预测初始值的残差序列,构建基于贝叶斯最小二乘支持向量机法的混沌时间序列预测模型(RM模型),得到残差预测值;同时将RM模型得到的残差预测值实时补偿到BL模型的需水量预测初始值中,得到经过残差修正的需水量预测值.实例结果表明,RM模型可以准确捕获BL模型需水量预测初始值的残差变化趋势,对其残差序列进行准确预测;在短期需水量预测的精度和稳定性方面,由BL模型和RM模型叠加构成的组合预测模型(BL+RM模型)明显优于单一BL模型;BL+RM模型适用于平均需水量较小、水量波动性较大等不同特点用户的短期需水量预测,可有效满足实际工程的需要. 展开更多
关键词 短期需水量预测 残差修正 贝叶斯最小二乘支持向量机 混沌时间序列预测
在线阅读 下载PDF
基于Bayesian-MCMC算法的水利工程投标报价分布预测 被引量:5
8
作者 王绪民 郑顺超 《水电能源科学》 北大核心 2023年第9期155-158,206,共5页
投标是水利工程承包商获取项目的主要途径,投标报价的高低直接影响承包商能否获取项目的承建权,投标前对拟投水利工程投标报价分布进行预测可优化己方报价制定。为此,通过全局寻优的Bayesian-MCMC算法对投标报价分布模型进行反演,并通... 投标是水利工程承包商获取项目的主要途径,投标报价的高低直接影响承包商能否获取项目的承建权,投标前对拟投水利工程投标报价分布进行预测可优化己方报价制定。为此,通过全局寻优的Bayesian-MCMC算法对投标报价分布模型进行反演,并通过数值分析模拟承包商投标行为。结果表明,Bayesian-MCMC算法无需考虑贝叶斯估计中先验分布与似然函数的共轭性,且模拟所需数据更少,得到的分布稳定性好且更加精确。 展开更多
关键词 投标报价分布 bayesian-MCMC算法 BETA分布 数值模拟 预测
原文传递
Forecasting Winning Bid Prices in an Online Auction Market - Data Mining Approaches 被引量:1
9
作者 KIM Hongil BAEK Seung 《Journal of Electronic Science and Technology of China》 2004年第3期6-11,共6页
To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural ne... To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural network and Bayesian network in building a forecasting model. This research empirically shows that, in forecasting winning bid prices on online auction, data mining techniques have shown better performance than traditional statistical analysis, such as logistic regression and multivariate regression. 展开更多
关键词 bayesian network data mining neural network price forecasting
在线阅读 下载PDF
基于深度学习贝叶斯模型平均代理的油藏自动历史拟合研究
10
作者 张凯 陈旭 +3 位作者 刘丕养 张金鼎 张黎明 姚军 《钻采工艺》 北大核心 2025年第1期147-156,共10页
油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能... 油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能力方面存在局限性。基于空间特征构建的代理模型侧重于学习油藏渗流的空间特性,但忽视了时间维度;基于时空特征构建的模型虽然擅长捕捉时间序列特征,却在空间特征学习方面不足。为此,文章提出了一种基于深度学习的贝叶斯模型平均代理方法,利用贝叶斯模型平均方法对两种深度学习代理模型进行集成,结合二者优势,增强代理模型对油藏特征的多维度学习能力,从而提高预测精度。该方法进一步结合多重数据同化集合平滑器,应用于实际油藏历史拟合中。实验结果表明,基于深度学习贝叶斯模型平均代理的历史拟合方法能够在保证高效计算的同时,准确拟合油藏实际生产动态,为快速、精确的历史拟合提供了一种创新解决方案。 展开更多
关键词 深度学习 历史拟合 产量预测 贝叶斯模型平均方法 集成代理模型
在线阅读 下载PDF
基于时空统计建模的主要类型癌症全球疾病负担变化研究
11
作者 申力 徐瑱梵 +1 位作者 艾明耀 卢宾宾 《地球信息科学学报》 北大核心 2025年第3期698-715,共18页
【目的】癌症是全球绝大多数国家的主要致病死因,对人类寿命和公共卫生构成了严重威胁。本文探讨了全球五类主要癌症死亡率的时空分布特征,并给出了未来发展趋势预测。【方法】本文针对2011—2019年全球200个国家五类主要癌症(肺癌、结... 【目的】癌症是全球绝大多数国家的主要致病死因,对人类寿命和公共卫生构成了严重威胁。本文探讨了全球五类主要癌症死亡率的时空分布特征,并给出了未来发展趋势预测。【方法】本文针对2011—2019年全球200个国家五类主要癌症(肺癌、结直肠癌、胃癌、肝癌与胰腺癌),采用GBD数据与世界银行数据库资料,基于MGWR模型提取各类癌症死亡率影响因素的空间异质性特征,利用ARIMA模型提取各类癌症死亡率的时间变化趋势特征,并将该时空信息作为参数输入构建贝叶斯时空模型,对全球主要类型癌症死亡风险进行预测评估。【结果】研究发现,全球五类癌症死亡率均持续增加,2019年各类癌症死亡率较2011年平均上升了17.2/100000人。全球超过72.8%的国家癌症死亡相对风险较高(RR>1),呈现出明显的空间聚集性。【结论】相比非洲与南亚地区,欧洲、中亚、北美、东亚及太平洋地区癌症死亡率增速较快。相比中低收入和低收入国家,高收入和中高收入国家各类癌症死亡率上升趋势明显,相对风险更高。65岁及以上人口占比、吸烟、酒精、低运动强度、高糖加工饮食、人均GDP、人均GNI和人均医疗卫生支出成为全球主要类型癌症死亡风险的关键影响因素。本研究通过集成不同地理时空分析方法优势,创新性构建了涵括时空分组变量和不同影响因素的疾病风险时空预测模型,灵活度高,可解释性强,更适用于量化时空非平稳性关系,能够有效评估全球不同地区主要类型癌症死亡的相对风险,加深了地理空间建模技术与流行病研究的交叉融合,对严峻的全球癌症防控规划具有重大科学意义。 展开更多
关键词 全球疾病负担 癌症死亡率 多尺度地理加权回归 时间序列预测 贝叶斯时空模型
原文传递
Neural Network-Based Performance Index Model for Enterprise Goals Simulation and Forecasting
12
作者 Joe Essien Martin Ogharandukun 《Journal of Computer and Communications》 2023年第8期1-13,共13页
Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of p... Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of performance metrics is a key challenge for a huge number of firms. In order to preserve relevance and adaptability in competitive markets, it has become essential to respond proactively to complex events through informed decision-making that is supported by technology. Therefore, the objective of this study was to apply neural networks to the modeling, simulation, and forecasting of the effects of the performance indicators of Enterprise Information Systems on the achievement of corporate objectives and value creation. A set of quantifiable and sizeable conditionally independent associations were derived using a simplified joint probability distribution technique. Bayesian Neural Networks were utilized to describe the link between random variables (features) and to concisely and easily specify the joint probability distribution. The research demonstrated that Bayesian networks could effectively explore complex logical linkages by employing probability to represent uncertainty and probabilistic rules;and by applying impact models from Bayesian taxonomies to achieve learning and reasoning processes. 展开更多
关键词 Neural Network bayesian Neural Network Decision Support Predictor forecasting Decision Support Enterprise Architecture
在线阅读 下载PDF
基于递归贝叶斯模型过程多模式集合方法的华东2 m温度预报的应用及评估
13
作者 朱月佳 关虹 +5 位作者 朱跃建 崔波 邱学兴 王东勇 柳春 邢蕊 《大气科学学报》 北大核心 2025年第6期1028-1042,共15页
为进一步提高温度业务预报水平,本文采用美国国家环境预报中心环境模式中心(National Centers for Environmental Prediction-Environmental Modeling Center,NCEP-EMC)研发的基于递归贝叶斯模型过程(recursive Bayesian model process,... 为进一步提高温度业务预报水平,本文采用美国国家环境预报中心环境模式中心(National Centers for Environmental Prediction-Environmental Modeling Center,NCEP-EMC)研发的基于递归贝叶斯模型过程(recursive Bayesian model process,RBMP)的多模式集合技术,开展了华东2 m温度预报试验。利用2016—2017年欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)、NCEP和加拿大气象中心(Canadian Meteorological Centre,CMC)3个具有代表性的全球集合预报系统产品,在对各模式进行偏差订正的基础上,开展了RBMP算法应用试验和评估,建立了华东地区应用方案,再利用2019年9月—2020年5月ECMWF、NCEP集合预报资料开展试运行,初步讨论了RBMP方法在冬春季节预报失败案例中的适用性。结果表明:RBMP方法能够提供更加可靠的概率预报分布并有效提高短期时效的预报技巧。其中,冬季改进最明显,集合平均的均方根误差比ECMWF订正预报和等权重多模式集合分别降低3.0%~10.5%和2.0%~5.0%,且对高温和低温事件均具有更优的分辨能力。此外,RBMP方法还能够提高大部分预报失败案例的预报准确率,为难报案例提供了有价值的不确定信息。总体而言,RBMP技术不仅保留了BMA(Bayesian model averaging)方法的优势,且能满足业务应用对资料存储和计算效率的需求,通过二阶矩调整可以有效校正集合离散度,为进一步提高短期温度预报技巧提供了一种思路。 展开更多
关键词 多模式集合预报 递减平均法 递归贝叶斯模型过程 二阶矩校正 预报失败案例
在线阅读 下载PDF
基于Bayesian-Stacking模型的电影票房预测
14
作者 李小红 韩淑淑 《中国科技论文在线精品论文》 2024年第2期294-301,共8页
本文构建了一种基于XGBoost的特征选取方法以及Bayesian-Stacking集成算法的票房预测模型。首先,构建XGBoost的影响力测量模型进行变量筛选,能够简化后期模型的输入和提高模型特征变量的可解释性;其次,分别构建了BP神经网络、XGBoost、L... 本文构建了一种基于XGBoost的特征选取方法以及Bayesian-Stacking集成算法的票房预测模型。首先,构建XGBoost的影响力测量模型进行变量筛选,能够简化后期模型的输入和提高模型特征变量的可解释性;其次,分别构建了BP神经网络、XGBoost、Logistic Regression、LightGBM、GBDT以及Stacking模型,再利用贝叶斯优化算法实现上述模型超参数全局寻优后,对电影票房进行预测;最后,引入评价指标进行分析。结果表明:1)将贝叶斯优化算法与模型相结合,获得了相对于原模型更高的预测精度;2)Bayesian-Stacking模型的电影票房预测精度均优于其他模型。Bayesian-Stacking模型在电影上映期间预测最终票房具有较高的参考价值,可为有关部门提供决策参考。 展开更多
关键词 应用统计数学 电影票房预测 Stacking模型 XGBoost 贝叶斯算法
在线阅读 下载PDF
基于贝叶斯参数学习优化的海上风电机组动态可靠性预测
15
作者 黄玲玲 王全德 +3 位作者 应飞祥 苗育植 符杨 刘璐洁 《太阳能学报》 北大核心 2025年第10期703-713,共11页
为提升风电机组可靠性预测的准确性,构建一种基于贝叶斯参数学习优化的动态可靠性预测模型。首先,提出融合单纯可靠性贝叶斯网络与卷积神经网络的状态信息数据处理方法,以解决“多元异质”状态信息的参数不确定性和提取状态数据特征的... 为提升风电机组可靠性预测的准确性,构建一种基于贝叶斯参数学习优化的动态可靠性预测模型。首先,提出融合单纯可靠性贝叶斯网络与卷积神经网络的状态信息数据处理方法,以解决“多元异质”状态信息的参数不确定性和提取状态数据特征的问题。其次,提出基于参数学习优化的贝叶斯改进方法处理参数不确定性,提高模型对未来可靠性水平的预测准确性。最终,构建的基于贝叶斯参数学习优化的动态可靠性预测模型能精确预测风电机组在一定时间尺度内的可靠性变化趋势。算例结果表明,与其他基准模型相比,所提的预测模型在预测风电机组可靠性变化趋势方面表现出更高的优越性,进一步验证其有效性。 展开更多
关键词 海上风电机组 预测 深度学习 可靠性 贝叶斯网
原文传递
基于贝叶斯优化XGBoost的燃煤电厂负荷预测
16
作者 汪繁荣 刘宇航 胡雨千 《电工技术》 2025年第1期33-37,共5页
在众多的燃煤电厂耗能系统中,制粉系统是最主要的耗能系统之一,想要达到燃煤电厂发电时节约能源并降低消耗的预期目标,最重要的方式便是高质量、高效能地运转制粉系统。由于负荷的多样性与波动性显著增加,对预测模型提出了更高的泛化能... 在众多的燃煤电厂耗能系统中,制粉系统是最主要的耗能系统之一,想要达到燃煤电厂发电时节约能源并降低消耗的预期目标,最重要的方式便是高质量、高效能地运转制粉系统。由于负荷的多样性与波动性显著增加,对预测模型提出了更高的泛化能力和精度要求,因此急需一种预测精度高、稳定性突出的预测模型。为此提出了一种基于贝叶斯优化的XGBoost预测模型,以当前大型燃煤电厂发电机组普遍采用的中速磨冷一次风机正压直吹式制粉系统为研究对象,通过特征重要程度得分再排序和特征相关性分析降低了特征维度,使输入特征变量和输出制粉单耗具有较好的映射关系。模型能很好地挖掘输入与输出之间的映射关系,预测精度达到99.4%,在实际负荷预测中效果较好,可为节能降耗的方案制定提供参考。 展开更多
关键词 制粉系统 XGBoost算法 负荷预测 特征分析 贝叶斯优化
在线阅读 下载PDF
基于ECMWF集合预报的贝叶斯径流概率预报研究
17
作者 杨兴豪 程耀飞 +3 位作者 赵兰兰 张小磊 蒋贤亮 徐炜 《水文》 北大核心 2025年第5期59-67,共9页
数值气象预报信息和水文模型存在的固有误差,是流域径流预报不确定性的主要来源,开展基于贝叶斯径流概率预报是径流预报修正和不确定性分析的重要途径。以三峡上游流域为研究对象,利用ECMWF集合降雨预报驱动分布式SWAT水文模型,预报得到... 数值气象预报信息和水文模型存在的固有误差,是流域径流预报不确定性的主要来源,开展基于贝叶斯径流概率预报是径流预报修正和不确定性分析的重要途径。以三峡上游流域为研究对象,利用ECMWF集合降雨预报驱动分布式SWAT水文模型,预报得到1~10 d的径流过程;然后在对径流序列进行Box-Cox正态变换的基础上,构建贝叶斯径流概率预报模型(Bayesian Runoff Probability Forecasting,BRPF);最后,采用间隔转移概率方法和相邻转移概率方法分别开展1~10 d的径流概率预报。结果表明,相邻转移概率在预见期1~10 d预报精度下降较为平缓,干流站点的NSE均超过0.85,支流站点NSE均超过0.45;而间隔转移概率的预报精度波动较大。两种转移概率方法均可提高径流预报精度,但相邻转移概率方法的精度优于间隔转移概率方法。 展开更多
关键词 集合预报 径流预报 贝叶斯径流概率预报 转移概率 Box-Cox变换
在线阅读 下载PDF
基于贝叶斯模型平均法的洪泽湖水位预报研究 被引量:2
18
作者 杨昌文 王超 +1 位作者 雷晓辉 许珂 《海河水利》 2025年第1期80-86,共7页
贝叶斯模型平均法提供了一种统计框架,用于评估和比较多个候选模型。它通过结合多个模型的预测结果并对它们的权重进行估计,从而提供更准确和鲁棒的预测和推断结果。利用长短期记忆网络(LSTM)、埃尔曼网络(Elman)、控制循环单元(GRU)等... 贝叶斯模型平均法提供了一种统计框架,用于评估和比较多个候选模型。它通过结合多个模型的预测结果并对它们的权重进行估计,从而提供更准确和鲁棒的预测和推断结果。利用长短期记忆网络(LSTM)、埃尔曼网络(Elman)、控制循环单元(GRU)等循环神经网络建立了洪泽湖水位预报模型,并在此基础上运用BMA方法对这3个模型的预测结果进行组合与验证。结果表明,基于贝叶斯组合方法的BMA组合模型较单一模型预测精度更高,提高了预报的稳定性。 展开更多
关键词 贝叶斯平均模型 洪泽湖 水位预报 模型集合
在线阅读 下载PDF
基于改进贝叶斯最大熵的乡村旅游电动汽车多时间尺度充电负荷预测 被引量:1
19
作者 顾睿 于艾清 +3 位作者 潘含芝 杨斐翔 王育飞 薛花 《电力系统保护与控制》 北大核心 2025年第12期117-127,共11页
当前乡镇电动汽车(electric vehicle,EV)充电负荷样本集的获取受限于充电网络覆盖率低,给乡村旅游EV充电负荷预测带来极大挑战。且目前研究大多局限于短期预测范畴,鲜有涉及对多时间尺度的深入探讨。基于此,提出一种基于改进贝叶斯最大... 当前乡镇电动汽车(electric vehicle,EV)充电负荷样本集的获取受限于充电网络覆盖率低,给乡村旅游EV充电负荷预测带来极大挑战。且目前研究大多局限于短期预测范畴,鲜有涉及对多时间尺度的深入探讨。基于此,提出一种基于改进贝叶斯最大熵(Bayesianmaximum entropy,BME)的乡村旅游EV多时间尺度充电负荷预测模型。首先,考虑EV的出行特性受温度与交通因素的影响建立EV单位能耗模型,在此基础上建立基于改进BME的乡村旅游EV短期负荷预测模型。其次,结合最优灰色模型与旅游客流量预测模型预测未来乡村旅游EV保有量,从而推演出乡村旅游EV中长期负荷预测结果。最后,基于江苏省某乡村旅游景区温度与行车数据进行仿真分析,验证所提方法的有效性并预测乡村旅游EV充电负荷的未来发展趋势。 展开更多
关键词 电动汽车 多时间尺度负荷预测 贝叶斯最大熵 季节性特征
在线阅读 下载PDF
基于多因素特征工程建模的电力负荷预测方法 被引量:1
20
作者 刘硕 丁宇昂 赵梓焱 《沈阳工业大学学报》 北大核心 2025年第3期309-316,共8页
【目的】准确的电力负荷预测是电力系统实现顺利运行和有效管理的关键,可使电力公司有效调度发电设备,从而提高电力系统的运行效率和经济效益。然而,电力负荷数据受多种外部因素影响,同时具有显著的时间依赖性,导致其难以精准预测。为此... 【目的】准确的电力负荷预测是电力系统实现顺利运行和有效管理的关键,可使电力公司有效调度发电设备,从而提高电力系统的运行效率和经济效益。然而,电力负荷数据受多种外部因素影响,同时具有显著的时间依赖性,导致其难以精准预测。为此,提出一种融合多因素建模与时间序列分析的电力负荷预测模型,通过兼顾多因素复杂影响分析与电力负荷时间依赖性特征,实现电力负荷的精准预测。【方法】为了突破多因素分析方法与时间序列预测建模方法各自的局限性,基于深度学习与多因素分析方法,提出了一种结合长短期记忆(long short-term memory,LSTM)网络与贝叶斯优化算法的改进电力负荷预测模型。首先,构建了一个全面的多因素特征池,包括电力负荷的历史时序特征和多种外部因素特征,以充分捕捉电力负荷数据与多种影响因素间的复杂关系。其次,采用LSTM网络作为核心模型,利用其独特的门控机制与记忆单元,捕捉电力负荷数据的时间依赖性和多因素之间的复杂关联。引入贝叶斯优化算法对LSTM模型的超参数进行调优,以高斯过程作为代理模型,充分利用先验信息,提升模型训练效率和预测性能。【结果】利用5个实际变压器数据集对模型进行了训练和测试,并通过多种评价指标验证了模型的有效性。基于多因素特征工程建模的电力负荷预测方法在5个不同变压器数据集上的预测性能均显著优于利用单一因素预测的模型,进一步突出了多因素特征池的有效性。LSTM模型的最大决定系数为0.9207,最小均方误差为0.042,最小平均绝对误差为0.024,表明其在复杂电力负荷预测任务中具有优越性能。【结论】融合多因素建模与时间序列分析的电力负荷预测模型充分考虑了外部因素的复杂性和电力负荷数据的时间依赖性特征,创新性地引入了一个全面的特征池参与LSTM模型的训练和测试。结合多因素特征池建模的LSTM网络具有较高的预测精度和鲁棒性,为电力负荷预测提供了新的技术思路,对智能电网的规划和调度具有重要的参考价值,并为进一步发展精准负荷预测技术奠定了基础。 展开更多
关键词 电力负荷预测 LSTM网络 贝叶斯优化 多因素分析 时间序列预测 特征工程 数据驱动建模 深度学习
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部