A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers...A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers of large-scale intrusion detection systems. In order to improve the efficiency and veracity of intrusion analysis, the intrusion intensity values are picked from alert data and Bayesian dynamic forecast method is used to detect anomaly. The experiments show that the new method is effective on detecting macroscopical anomaly in large-scale intrusion detection systems.展开更多
Recently the importance of intellectual property has been increased. There has been various ways of research on analy- sis of companies, forecast of technology and so on through patents and many investments of money a...Recently the importance of intellectual property has been increased. There has been various ways of research on analy- sis of companies, forecast of technology and so on through patents and many investments of money and time. Unlike traditional method of patent analysis such as company analysis, forecasting technologies, this research is to suggest the ways to forecast registration and rejection of patents which help minimize the efforts to register patents. To do so, in- formation such as inventors, applicants, application date, and IPC codes were extracted to be used as input variables for analyzing Bayesian network. Especially, among various forms of Bayesian network, we used Tree Augmented NBN (TAN) to forecast registration and rejection of patent. This is because, TAN was assumed to have dependence between variables. As a result of this Bayesian network, it was shown that there are nearly more than 80% of accuracy to fore- cast registration and rejection of patents. Therefore, we expect the minimization of time and cost of registration by forecasting registration and rejection of R&D patent through this research.展开更多
Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. ...Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. This simulation study considered the performances of the classical VAR and Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error terms. The results from 10,000 iteration revealed that the BVAR models are excellent for time series length of T=8 for all levels of collinearity while the classical VAR is effective for time series length of T=16 for all collinearity levels except when ρ = -0.9 and ρ = -0.95. We therefore recommended that for effective short term forecasting, the time series length, forecasting horizon and the collinearity level should be considered.展开更多
A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which fu...A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.展开更多
To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural ne...To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural network and Bayesian network in building a forecasting model. This research empirically shows that, in forecasting winning bid prices on online auction, data mining techniques have shown better performance than traditional statistical analysis, such as logistic regression and multivariate regression.展开更多
Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of p...Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of performance metrics is a key challenge for a huge number of firms. In order to preserve relevance and adaptability in competitive markets, it has become essential to respond proactively to complex events through informed decision-making that is supported by technology. Therefore, the objective of this study was to apply neural networks to the modeling, simulation, and forecasting of the effects of the performance indicators of Enterprise Information Systems on the achievement of corporate objectives and value creation. A set of quantifiable and sizeable conditionally independent associations were derived using a simplified joint probability distribution technique. Bayesian Neural Networks were utilized to describe the link between random variables (features) and to concisely and easily specify the joint probability distribution. The research demonstrated that Bayesian networks could effectively explore complex logical linkages by employing probability to represent uncertainty and probabilistic rules;and by applying impact models from Bayesian taxonomies to achieve learning and reasoning processes.展开更多
为进一步提高温度业务预报水平,本文采用美国国家环境预报中心环境模式中心(National Centers for Environmental Prediction-Environmental Modeling Center,NCEP-EMC)研发的基于递归贝叶斯模型过程(recursive Bayesian model process,...为进一步提高温度业务预报水平,本文采用美国国家环境预报中心环境模式中心(National Centers for Environmental Prediction-Environmental Modeling Center,NCEP-EMC)研发的基于递归贝叶斯模型过程(recursive Bayesian model process,RBMP)的多模式集合技术,开展了华东2 m温度预报试验。利用2016—2017年欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)、NCEP和加拿大气象中心(Canadian Meteorological Centre,CMC)3个具有代表性的全球集合预报系统产品,在对各模式进行偏差订正的基础上,开展了RBMP算法应用试验和评估,建立了华东地区应用方案,再利用2019年9月—2020年5月ECMWF、NCEP集合预报资料开展试运行,初步讨论了RBMP方法在冬春季节预报失败案例中的适用性。结果表明:RBMP方法能够提供更加可靠的概率预报分布并有效提高短期时效的预报技巧。其中,冬季改进最明显,集合平均的均方根误差比ECMWF订正预报和等权重多模式集合分别降低3.0%~10.5%和2.0%~5.0%,且对高温和低温事件均具有更优的分辨能力。此外,RBMP方法还能够提高大部分预报失败案例的预报准确率,为难报案例提供了有价值的不确定信息。总体而言,RBMP技术不仅保留了BMA(Bayesian model averaging)方法的优势,且能满足业务应用对资料存储和计算效率的需求,通过二阶矩调整可以有效校正集合离散度,为进一步提高短期温度预报技巧提供了一种思路。展开更多
文摘A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers of large-scale intrusion detection systems. In order to improve the efficiency and veracity of intrusion analysis, the intrusion intensity values are picked from alert data and Bayesian dynamic forecast method is used to detect anomaly. The experiments show that the new method is effective on detecting macroscopical anomaly in large-scale intrusion detection systems.
文摘Recently the importance of intellectual property has been increased. There has been various ways of research on analy- sis of companies, forecast of technology and so on through patents and many investments of money and time. Unlike traditional method of patent analysis such as company analysis, forecasting technologies, this research is to suggest the ways to forecast registration and rejection of patents which help minimize the efforts to register patents. To do so, in- formation such as inventors, applicants, application date, and IPC codes were extracted to be used as input variables for analyzing Bayesian network. Especially, among various forms of Bayesian network, we used Tree Augmented NBN (TAN) to forecast registration and rejection of patent. This is because, TAN was assumed to have dependence between variables. As a result of this Bayesian network, it was shown that there are nearly more than 80% of accuracy to fore- cast registration and rejection of patents. Therefore, we expect the minimization of time and cost of registration by forecasting registration and rejection of R&D patent through this research.
文摘Forecasts can either be short term, medium term or long term. In this work we considered short term forecast because of the problem of limited data or time series data that is often encounter in time series analysis. This simulation study considered the performances of the classical VAR and Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error terms. The results from 10,000 iteration revealed that the BVAR models are excellent for time series length of T=8 for all levels of collinearity while the classical VAR is effective for time series length of T=16 for all collinearity levels except when ρ = -0.9 and ρ = -0.95. We therefore recommended that for effective short term forecasting, the time series length, forecasting horizon and the collinearity level should be considered.
基金Under the auspices of National Natural Science Foundation of China (No. 50609005)Chinese Postdoctoral Science Foundation (No. 2009451116)+1 种基金Postdoctoral Foundation of Heilongjiang Province (No. LBH-Z08255)Foundation of Heilongjiang Province Educational Committee (No. 11451022)
文摘A hydrologic model consists of several parameters which are usually calibrated based on observed hy-drologic processes. Due to the uncertainty of the hydrologic processes, model parameters are also uncertain, which further leads to the uncertainty of forecast results of a hydrologic model. Working with the Bayesian Forecasting System (BFS), Markov Chain Monte Carlo simulation based Adaptive Metropolis method (AM-MCMC) was used to study parameter uncertainty of Nash model, while the probabilistic flood forecasting was made with the simu-lated samples of parameters of Nash model. The results of a case study shows that the AM-MCMC based on BFS proposed in this paper is suitable to obtain the posterior distribution of the parameters of Nash model according to the known information of the parameters. The use of Nash model and AM-MCMC based on BFS was able to make the probabilistic flood forecast as well as to find the mean and variance of flood discharge, which may be useful to estimate the risk of flood control decision.
文摘To solve information asymmetry problem on online auction, this study suggests and validates a forecasting model of winning bid prices. Especially, it explores the usability of data mining approaches, such as neural network and Bayesian network in building a forecasting model. This research empirically shows that, in forecasting winning bid prices on online auction, data mining techniques have shown better performance than traditional statistical analysis, such as logistic regression and multivariate regression.
文摘Enterprise Information System management has become an increasingly vital factor for many firms. Several organizations have encountered problems when attempting to evaluate organizational performance. Measurement of performance metrics is a key challenge for a huge number of firms. In order to preserve relevance and adaptability in competitive markets, it has become essential to respond proactively to complex events through informed decision-making that is supported by technology. Therefore, the objective of this study was to apply neural networks to the modeling, simulation, and forecasting of the effects of the performance indicators of Enterprise Information Systems on the achievement of corporate objectives and value creation. A set of quantifiable and sizeable conditionally independent associations were derived using a simplified joint probability distribution technique. Bayesian Neural Networks were utilized to describe the link between random variables (features) and to concisely and easily specify the joint probability distribution. The research demonstrated that Bayesian networks could effectively explore complex logical linkages by employing probability to represent uncertainty and probabilistic rules;and by applying impact models from Bayesian taxonomies to achieve learning and reasoning processes.
文摘为进一步提高温度业务预报水平,本文采用美国国家环境预报中心环境模式中心(National Centers for Environmental Prediction-Environmental Modeling Center,NCEP-EMC)研发的基于递归贝叶斯模型过程(recursive Bayesian model process,RBMP)的多模式集合技术,开展了华东2 m温度预报试验。利用2016—2017年欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)、NCEP和加拿大气象中心(Canadian Meteorological Centre,CMC)3个具有代表性的全球集合预报系统产品,在对各模式进行偏差订正的基础上,开展了RBMP算法应用试验和评估,建立了华东地区应用方案,再利用2019年9月—2020年5月ECMWF、NCEP集合预报资料开展试运行,初步讨论了RBMP方法在冬春季节预报失败案例中的适用性。结果表明:RBMP方法能够提供更加可靠的概率预报分布并有效提高短期时效的预报技巧。其中,冬季改进最明显,集合平均的均方根误差比ECMWF订正预报和等权重多模式集合分别降低3.0%~10.5%和2.0%~5.0%,且对高温和低温事件均具有更优的分辨能力。此外,RBMP方法还能够提高大部分预报失败案例的预报准确率,为难报案例提供了有价值的不确定信息。总体而言,RBMP技术不仅保留了BMA(Bayesian model averaging)方法的优势,且能满足业务应用对资料存储和计算效率的需求,通过二阶矩调整可以有效校正集合离散度,为进一步提高短期温度预报技巧提供了一种思路。