期刊文献+
共找到534篇文章
< 1 2 27 >
每页显示 20 50 100
Comparison and combination of EAKF and SIR-PF in the Bayesian filter framework 被引量:3
1
作者 SHEN Zheqi ZHANG Xiangming TANG Youmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第3期69-78,共10页
Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustme... Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustment Kalman filter(EAKF) and sequential importance resampling particle filter(SIR-PF), using a well-known nonlinear and non-Gaussian model(Lorenz '63 model). The EAKF, which is a deterministic scheme of the ensemble Kalman filter(En KF), performs better than the classical(stochastic) En KF in a general framework. Comparison between the SIR-PF and the EAKF reveals that the former outperforms the latter if ensemble size is so large that can avoid the filter degeneracy, and vice versa. The impact of the probability density functions and effective ensemble sizes on assimilation performances are also explored. On the basis of comparisons between the SIR-PF and the EAKF, a mixture filter, called ensemble adjustment Kalman particle filter(EAKPF), is proposed to combine their both merits. Similar to the ensemble Kalman particle filter, which combines the stochastic En KF and SIR-PF analysis schemes with a tuning parameter, the new mixture filter essentially provides a continuous interpolation between the EAKF and SIR-PF. The same Lorenz '63 model is used as a testbed, showing that the EAKPF is able to overcome filter degeneracy while maintaining the non-Gaussian nature, and performs better than the EAKF given limited ensemble size. 展开更多
关键词 data assimilation ensemble adjustment Kalman filter particle filter bayesian estimation ensemble adjustment Kalman particle filter
在线阅读 下载PDF
A Bayesian Filter for Sound Environment System with Quantized Observation*
2
作者 Hisako Orimoto Akira Ikuta 《Intelligent Information Management》 2018年第3期87-98,共12页
In the real sound environment, the observation data are usually contaminated by additional background noise of arbitrary distribution type. In order to estimate several evaluation quantities for specific signal based ... In the real sound environment, the observation data are usually contaminated by additional background noise of arbitrary distribution type. In order to estimate several evaluation quantities for specific signal based on the observed noisy data, it is fundamental to estimate the fluctuating wave form of the specific signal. On the other hand, the observation data are very often measured in a digital level form at discrete times. This is because some signal processing methods by utilizing a digital computer are indispensable for extracting exactly various kinds of statistical evaluation for the specific signal based on the quantized level data. In this study, a Bayesian filter matched to the complicated sound environment system is derived. First, in the real situation where the sound environment system is affected by background noise of arbitrary probability distribution, a stochastic system model with quantized observation is established. Next, two types of the recursive algorithm of Bayesian filter to estimate the unknown specific signal are theoretically proposed in the quantized level form. Finally, the effectiveness of the proposed theory is experimentally confirmed by applying it to the estimation problem of real sound environment. 展开更多
关键词 bayesian filter QUANTIZED OBSERVATION SOUND ENVIRONMENT
在线阅读 下载PDF
Smoother and Bayesian filter based semi-codeless tracking of dual-frequency GPS signals 被引量:5
3
作者 LIAO Bingyu YUAN Hong LIN Baojun 《Science in China(Series F)》 2006年第4期533-544,共12页
To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals ... To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals has been advanced. This signal processing technique has been proven effective and robust for affording access to dual-frequency GPS signals. This paper introduces the signal dynamics and measurement models, describes the W o D bit estimation method, and corrects the mistakes of direct estimation of W bit in current semi-codeless tracking. Median filter is chosen as a smoother to find the best measurements at the current time among the history and current information. The Bayesian filter is used to track the L2 P(Y) code phase and L2 carrier phase recursively. 展开更多
关键词 GPS P(Y) code W code A/S technology adapted median filter bayesian filter.
原文传递
Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon 被引量:12
4
作者 Huazhen Fang Ning Tian +2 位作者 Yebin Wang Meng Chu Zhou Mulugeta A. Haile 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期401-417,共17页
This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades o... This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date,one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective,which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics(e.g., mean and covariance) conditioned on a system's measurement data.This article offers a systematic introduction to the Bayesian state estimation framework and reviews various Kalman filtering(KF)techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation to more complicated problems such as simultaneous state and parameter/input estimation. 展开更多
关键词 Index Terms-Kalman filtering (KF) nonlinear bayesian esti-mation state estimation stochastic estimation.
在线阅读 下载PDF
Modified unscented particle filter for nonlinear Bayesian tracking 被引量:14
5
作者 Zhan Ronghui Xin Qin Wan Jianwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期7-14,共8页
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv... A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one. 展开更多
关键词 bayesian estimation modified unscented particle filter nonlinear filtering unscented Kalman filter
在线阅读 下载PDF
Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics 被引量:5
6
作者 Qiu Hao Huang Gaoming Gao Jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1378-1384,共7页
It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random... It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB) approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB) filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD) filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer) filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated. 展开更多
关键词 Labeled random finite set Multi-Bernoulli filter Multi-target tracking Parameter estimation Variational bayesian approximation
原文传递
基于Naive Bayesian算法的客户端邮件过滤器的实现 被引量:2
7
作者 左瑞欣 徐惠民 吴聪聪 《计算机工程与设计》 CSCD 北大核心 2006年第7期1161-1163,共3页
“垃圾”邮件是Internet上面临急待解决的问题。Naive Bayesian过滤器由于其简单高效性在文本分类中应用较广,重点研究了Naive Bayesian算法,给出了一个“垃圾”邮件过滤器,依据邮件的内容而不是通过设置规则来过滤邮件,并通过实验论证... “垃圾”邮件是Internet上面临急待解决的问题。Naive Bayesian过滤器由于其简单高效性在文本分类中应用较广,重点研究了Naive Bayesian算法,给出了一个“垃圾”邮件过滤器,依据邮件的内容而不是通过设置规则来过滤邮件,并通过实验论证了它在客户端过滤邮件的可行性和有效性。 展开更多
关键词 “垃圾”邮件 特征抽取 向量空间模型 文本分类 NAIVE bayesian过滤器
在线阅读 下载PDF
免微分非线性Bayesian滤波方法评述 被引量:12
8
作者 程水英 邹继伟 汤鹏 《宇航学报》 EI CAS CSCD 北大核心 2009年第3期843-857,876,共16页
以非线性递推Bayesian滤波问题的求解及其历史渊源为起点,分两类对各种免微分非线性Bayesian滤波方法或免微分方法的原理和算法进行了评述:一类是以线性最小均方误差最优估计子为特点的免微分高斯滤波,包括无味卡尔曼滤波、均差滤波器... 以非线性递推Bayesian滤波问题的求解及其历史渊源为起点,分两类对各种免微分非线性Bayesian滤波方法或免微分方法的原理和算法进行了评述:一类是以线性最小均方误差最优估计子为特点的免微分高斯滤波,包括无味卡尔曼滤波、均差滤波器、中心差分滤波器和Gauss-Hermite滤波器或积分卡尔曼滤波器;另一类是后验密度数值逼近免微分方法,包括栅格法(GBMs)与近似栅格法、矩近似法和以粒子滤波为代表的Monte Carlo方法。其中还包括了作者的一些最新研究成果,如迭代UKF算法、裂变自举PF算法和关于粒子滤波算法有限收敛界的概念等。之后从加权统计线性回归的角度对两类免微分方法进行了统一认识,统一为以数值方法为特点的广义PF。为了建立一个关于各种免微分算法性能的整体印象,论文还通过一个复杂的递推非线性滤波估计例子,用MonteCarlo仿真实验的方法对7种典型的免微分方法和和传统的EKF算法进行了比较研究。最后对两类免微分方法进行了简单的比较,并指出了进一步研究的方向。 展开更多
关键词 非线性估计 递推bayesian滤波 扩展卡尔曼滤波 高斯滤波 无味变换 无味卡尔曼滤波 均差 滤波器 中心差分滤波器 Gauss—Hermite滤波器 积分卡尔曼滤波器 迭代无味卡尔曼滤波 栅格法 近似栅格 矩近似法 Monte CARLO方法 粒子滤波 裂变自举粒子滤波 加权统计线性回归
在线阅读 下载PDF
基于有监督Bayesian网络的垃圾邮件过滤 被引量:8
9
作者 刘震 周明天 《计算机应用》 CSCD 北大核心 2006年第3期558-561,共4页
对影响邮件特性的邮件报文格式作了仔细的分析并对垃圾邮件的特征进行了分类归纳,在此基础上构建了一个有监督的Bayesian邮件分类网络。通过对该网络作Bayesian参数估计,实现了判定邮件类别的不确定推理。对不同邮件测试集的在线学习试... 对影响邮件特性的邮件报文格式作了仔细的分析并对垃圾邮件的特征进行了分类归纳,在此基础上构建了一个有监督的Bayesian邮件分类网络。通过对该网络作Bayesian参数估计,实现了判定邮件类别的不确定推理。对不同邮件测试集的在线学习试验结果表明,有监督Bayesian邮件分类网络能够有效地实现垃圾邮件的相对完备特征学习,改善邮件过滤的准确率。 展开更多
关键词 垃圾邮件 bayesian网络 邮件过滤 参数估计
在线阅读 下载PDF
小波域非Bayesian滤波方法研究
10
作者 魏文畅 杨俊杰 蔡建立 《计算机工程与应用》 CSCD 北大核心 2009年第4期140-142,168,共4页
对近几年来小波域滤波方法的研究现状与新发展进行归纳总结。一方面从算法思想,原理和优缺点等角度对近年来所提出的较有代表性的小波滤波算法进行分析概括;另一方面选择一些典型的滤波算法和一些常用的信号,主要从信噪比(SNR)和均方误... 对近几年来小波域滤波方法的研究现状与新发展进行归纳总结。一方面从算法思想,原理和优缺点等角度对近年来所提出的较有代表性的小波滤波算法进行分析概括;另一方面选择一些典型的滤波算法和一些常用的信号,主要从信噪比(SNR)和均方误差(MSE)两个方面进行实验,并分别就同一种滤波算法,不同的信号以及同一个信号,不同的滤波算法的滤波情况进行对比分析。最后通过结合上述分析给出小波滤波的研究热点、难点、不足和有待解决的一些问题。 展开更多
关键词 小波 滤波 算法 信号 bayesian
在线阅读 下载PDF
一个基于Naive Bayesian垃圾邮件过滤器的改进 被引量:3
11
作者 成宝国 冯宏伟 《计算机技术与发展》 2006年第2期98-99,共2页
近几年来,垃圾邮件成为互联网的公害之一。现有的反垃圾邮件技术中,基于统计方法的Naive Bayesian分类算法在垃圾邮件过滤中有很好的效果。文中简单介绍了Naive Bayesian分类算法,提出了一种旨在提高垃圾邮件过滤精确率的改进方案,并给... 近几年来,垃圾邮件成为互联网的公害之一。现有的反垃圾邮件技术中,基于统计方法的Naive Bayesian分类算法在垃圾邮件过滤中有很好的效果。文中简单介绍了Naive Bayesian分类算法,提出了一种旨在提高垃圾邮件过滤精确率的改进方案,并给出了实验结果。 展开更多
关键词 垃圾邮件 NAIVE bayesian文本分类器 反垃圾邮件技术
在线阅读 下载PDF
一种基于Bayesian网络的网页推荐算法 被引量:1
12
作者 王爱国 李廉 +1 位作者 杨静 陈桂林 《山东大学学报(工学版)》 CAS 北大核心 2011年第4期137-142,共6页
为改善用户的Web页面访问行为、提高访问效率,设计了一种基于贝叶斯网络的网页推荐模型及推荐算法。通过收集和分析服务器中的描述文件和日志文件,利用Bayesian网络分析页面间的依赖关系,构建了基于贝叶斯网络的网页推荐模型并产生推荐... 为改善用户的Web页面访问行为、提高访问效率,设计了一种基于贝叶斯网络的网页推荐模型及推荐算法。通过收集和分析服务器中的描述文件和日志文件,利用Bayesian网络分析页面间的依赖关系,构建了基于贝叶斯网络的网页推荐模型并产生推荐集。通过在Microsoft公司提供的网络日志数据集上做的实验,可以获得超过80%的准确率和覆盖率。理论分析和实验结果表明:算法能够在线实时向用户做出个性化的推荐,与已有的推荐算法相比,算法能较快地给出推荐集,并且可以获得更高的准确率和覆盖率。 展开更多
关键词 数据挖掘 个性化推荐 协同过滤 贝叶斯网络
原文传递
Selection of noise parameters for Kalman filter 被引量:5
13
作者 阮家荣 许嘉贤 莫启明 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第1期49-56,共8页
The Bayesian probabilistic approach is proposed to estimate the process noise and measurement noise parameters for a Kalman filter. With state vectors and covariance matrices estimated by the Kalman filter, the likeho... The Bayesian probabilistic approach is proposed to estimate the process noise and measurement noise parameters for a Kalman filter. With state vectors and covariance matrices estimated by the Kalman filter, the likehood of the measurements can be constructed as a function of the process noise and measurement noise parameters. By maximizing the likelihood function with respect to these noise parameters, the optimal values can be obtained. Furthermore, the Bayesian probabilistic approach allows the associated uncertainty to be quantified. Examples using a single-degree-of-freedom system and a ten-story building illustrate the proposed method. The effect on the performance of the Kalman filter due to the selection of the process noise and measurement noise parameters was demonstrated. The optimal values of the noise parameters were found to be close to the actual values in the sense that the actual parameters were in the region with significant probability density. Through these examples, the Bayesian approach was shown to have the capability to provide accurate estimates of the noise parameters of the Kalman filter, and hence for state estimation. 展开更多
关键词 bayesian inference Kalman filter measurement noise process noise state estimation
在线阅读 下载PDF
Comparison of dynamic Bayesian network approaches for online diagnosis of aircraft system 被引量:2
14
作者 于劲松 冯威 +1 位作者 唐荻音 刘浩 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2926-2934,共9页
The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To a... The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To address this problem, two dynamic Bayesian network(DBN) approaches are proposed. One approach prunes the DBN of system, and then uses particle filter(PF) for this pruned DBN(PDBN) to perform online diagnosis. The problem is that estimates from a PF tend to have high variance for small sample sets. Using large sample sets is computationally expensive. The other approach compiles the PDBN into a dynamic arithmetic circuit(DAC) using an offline procedure that is applied only once, and then uses this circuit to provide online diagnosis recursively. This approach leads to the most computational consumption in the offline procedure. The experimental results show that the DAC, compared with the PF for PDBN, not only provides more reliable online diagnosis, but also offers much faster inference. 展开更多
关键词 online diagnosis dynamic bayesian network particle filter dynamic arithmetic circuit
在线阅读 下载PDF
Multiple vehicle signals separation based on particle filtering in wireless sensor network 被引量:1
15
作者 Yah Kai Huang Qi Wei Jianming Liu Haitao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期440-446,共7页
A novel statistical method based on particle filtering is presented for multiple vehicle acoustic signals separation problem in wireless sensor network. The particle filtering method is able to deal with non-Gaussian ... A novel statistical method based on particle filtering is presented for multiple vehicle acoustic signals separation problem in wireless sensor network. The particle filtering method is able to deal with non-Gaussian and nonlinear models and non-stationary sources. Using some instantaneously mixed observations of several real-world vehicle acoustic signals, the proposed statistical method is compared with a conventional non-stationary Blind Source Separation algorithm and attractive simulation results are achieved. Moreover, considering the natural convenience to transmit particles between sensor nodes, the algorithm based on particle filtering is believed to have potential to enable the task of multiple vehicles recognition collaboratively performed by sensor nodes in distributed wireless sensor network. 展开更多
关键词 wireless sensor network bayesian source separation particle filtering sequential Monte Carlo.
在线阅读 下载PDF
基于Bayesian-Fisher混合模型的强跟踪当前统计模型 被引量:1
16
作者 包守亮 程水英 许登荣 《现代雷达》 CSCD 北大核心 2019年第1期47-52,59,共7页
针对当前统计模型(CS)不能自适应调节机动参数,导致对弱机动以及强机动目标跟踪性能下降的问题,提出了一种基于Bayesian-Fisher混合模型的新方法。首先,通过引入Bayesian-Fisher混合模型,将机动加速度均值作为未知的确定性输入增广到状... 针对当前统计模型(CS)不能自适应调节机动参数,导致对弱机动以及强机动目标跟踪性能下降的问题,提出了一种基于Bayesian-Fisher混合模型的新方法。首先,通过引入Bayesian-Fisher混合模型,将机动加速度均值作为未知的确定性输入增广到状态变量中,实现了对加速度均值的在线自适应估计;其次,根据强跟踪滤波器(STF)的思想,引入时变渐消因子,增强算法对突变状态的适应能力。仿真结果表明,该算法不仅提高了对弱机动和强机动目标的跟踪精度,也削弱了对初始机动参数的依赖。 展开更多
关键词 当前统计模型 bayesian-Fisher模型 强跟踪 机动目标跟踪
原文传递
Recursive Filter with Partial Knowledge on Inputs and Outputs
17
作者 Jinya Su Baibing Li Wen-Hua Chen 《International Journal of Automation and computing》 EI CSCD 2015年第1期35-42,共8页
This paper investigates the problem of state estimation for discrete-time stochastic linear systems, where additional knowledge on the unknown inputs is available at an aggregate level and the knowledge on the missing... This paper investigates the problem of state estimation for discrete-time stochastic linear systems, where additional knowledge on the unknown inputs is available at an aggregate level and the knowledge on the missing measurements can be described by a known stochastic distribution. Firstly, the available knowledge on the unknown inputs and the state equation is used to form the prior distribution of the state vector at each time step. Secondly, to obtain an analytically tractable likelihood function, the effect of missing measurements is broken down into a systematic part and a random part, and the latter is modeled as part of the observation noise. Then, a recursive filter is obtained based on Bayesian inference. Finally, a numerical example is provided to evaluate the performance of the proposed methods. 展开更多
关键词 bayesian inference Kalman filter missing measurements state estimation unknown inputs
原文传递
An Improved Bayesian with Application to Anti-Spam Email 被引量:2
18
作者 詹川 卢显良 +1 位作者 周旭 侯孟书 《Journal of Electronic Science and Technology of China》 2005年第1期30-33,共4页
Along with the wide application of e-mail nowadays, many spam e-mails flood into people’s email-boxes and cause catastrophes to their study and life. In anti-spam e-mails campaign, we depend on not only legal measure... Along with the wide application of e-mail nowadays, many spam e-mails flood into people’s email-boxes and cause catastrophes to their study and life. In anti-spam e-mails campaign, we depend on not only legal measures but also technological approaches. The Bayesian classifier provides a simple and effective approach to discriminate classification. This paper presents a new improved Bayesian-based anti-spam e-mail filter. We adopt a way of attribute selection based on word entropy, use vector weights which are represented by word frequency, and deduce its corresponding formula. It is proved that our filter improves total performances apparently in our experiment. 展开更多
关键词 word entropy bayesian classification anti-spam e-mail filter attribute selection VECTOR
在线阅读 下载PDF
一种基于变分贝叶斯理论的椭圆形扩展目标跟踪方法
19
作者 陈辉 王莉 +1 位作者 张天佑 张光华 《兰州理工大学学报》 北大核心 2025年第3期81-88,共8页
针对厚尾噪声条件下椭圆扩展目标跟踪问题,基于变分贝叶斯推断提出了一种鲁棒性学生t椭圆形扩展目标跟踪方法.首先,采用学生t分布对非高斯厚尾过程和量测噪声进行建模,利用K-L散度寻找最接近学生t分布的高斯分布,并将后验概率密度近似... 针对厚尾噪声条件下椭圆扩展目标跟踪问题,基于变分贝叶斯推断提出了一种鲁棒性学生t椭圆形扩展目标跟踪方法.首先,采用学生t分布对非高斯厚尾过程和量测噪声进行建模,利用K-L散度寻找最接近学生t分布的高斯分布,并将后验概率密度近似为高斯分布.其次,用服从逆威沙特分布的随机正定矩阵来描述椭圆形状大小和方向,然后基于分层高斯状态空间模型和变分贝叶斯方法推导出未知尺度矩阵和辅助随机变量,联合递推出目标的运动状态和形状扩展状态.最后,通过构建相应的仿真实验验证了所提算法的有效性和鲁棒性. 展开更多
关键词 扩展目标跟踪 厚尾噪声 变分贝叶斯滤波 随机矩阵
在线阅读 下载PDF
偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法 被引量:2
20
作者 邓洪高 余润华 +2 位作者 纪元法 吴孙勇 孙少帅 《电子与信息学报》 北大核心 2025年第1期156-166,共11页
针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏... 针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏差,将相邻时刻目标状态扩维以满足实时滤波需求,利用逆Wishart分布建模未知量测噪声协方差矩阵,从而建立目标状态、指示变量、噪声协方差矩阵的联合分布,并通过变分贝叶斯推断来求解各个参数的近似后验。为减小滤波负担,对扩维后的状态向量进行边缘化处理,结合容积卡尔曼滤波方法实现边缘化容积卡尔曼滤波跟踪。仿真实验结果表明,所提方法能够同时处理突变测量偏差和未知时变量测噪声,从而对目标进行有效跟踪。 展开更多
关键词 突变测量偏差 Beta-Bernoulli分布 逆Wishart分布 变分贝叶斯推断 边缘化容积卡尔曼滤波
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部