Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustme...Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustment Kalman filter(EAKF) and sequential importance resampling particle filter(SIR-PF), using a well-known nonlinear and non-Gaussian model(Lorenz '63 model). The EAKF, which is a deterministic scheme of the ensemble Kalman filter(En KF), performs better than the classical(stochastic) En KF in a general framework. Comparison between the SIR-PF and the EAKF reveals that the former outperforms the latter if ensemble size is so large that can avoid the filter degeneracy, and vice versa. The impact of the probability density functions and effective ensemble sizes on assimilation performances are also explored. On the basis of comparisons between the SIR-PF and the EAKF, a mixture filter, called ensemble adjustment Kalman particle filter(EAKPF), is proposed to combine their both merits. Similar to the ensemble Kalman particle filter, which combines the stochastic En KF and SIR-PF analysis schemes with a tuning parameter, the new mixture filter essentially provides a continuous interpolation between the EAKF and SIR-PF. The same Lorenz '63 model is used as a testbed, showing that the EAKPF is able to overcome filter degeneracy while maintaining the non-Gaussian nature, and performs better than the EAKF given limited ensemble size.展开更多
In the real sound environment, the observation data are usually contaminated by additional background noise of arbitrary distribution type. In order to estimate several evaluation quantities for specific signal based ...In the real sound environment, the observation data are usually contaminated by additional background noise of arbitrary distribution type. In order to estimate several evaluation quantities for specific signal based on the observed noisy data, it is fundamental to estimate the fluctuating wave form of the specific signal. On the other hand, the observation data are very often measured in a digital level form at discrete times. This is because some signal processing methods by utilizing a digital computer are indispensable for extracting exactly various kinds of statistical evaluation for the specific signal based on the quantized level data. In this study, a Bayesian filter matched to the complicated sound environment system is derived. First, in the real situation where the sound environment system is affected by background noise of arbitrary probability distribution, a stochastic system model with quantized observation is established. Next, two types of the recursive algorithm of Bayesian filter to estimate the unknown specific signal are theoretically proposed in the quantized level form. Finally, the effectiveness of the proposed theory is experimentally confirmed by applying it to the estimation problem of real sound environment.展开更多
To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals ...To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals has been advanced. This signal processing technique has been proven effective and robust for affording access to dual-frequency GPS signals. This paper introduces the signal dynamics and measurement models, describes the W o D bit estimation method, and corrects the mistakes of direct estimation of W bit in current semi-codeless tracking. Median filter is chosen as a smoother to find the best measurements at the current time among the history and current information. The Bayesian filter is used to track the L2 P(Y) code phase and L2 carrier phase recursively.展开更多
This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades o...This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date,one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective,which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics(e.g., mean and covariance) conditioned on a system's measurement data.This article offers a systematic introduction to the Bayesian state estimation framework and reviews various Kalman filtering(KF)techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation to more complicated problems such as simultaneous state and parameter/input estimation.展开更多
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv...A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.展开更多
It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random...It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB) approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB) filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD) filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer) filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated.展开更多
为了在视域(field of view,FOV)不同的条件下实现对数量时变的不确定目标的最优跟踪,提出一种高斯混合概率假设密度(Gaussian mixture probability hypothesis density,GM-PHD)滤波器的去相关算术平均(arithmetic average,AA)融合算法...为了在视域(field of view,FOV)不同的条件下实现对数量时变的不确定目标的最优跟踪,提出一种高斯混合概率假设密度(Gaussian mixture probability hypothesis density,GM-PHD)滤波器的去相关算术平均(arithmetic average,AA)融合算法。鉴于多目标AA融合被分解为多组单目标分量的合并,先通过重构贝叶斯融合推导出最优去相关估计融合,后将其用作单目标分量的合并方法。由于推导的去相关估计融合需要先验估计,设计了一个包含主滤波器的分层结构,以自动提供需要的先验估计。为了解决不同FOV导致的目标势低估问题,融合节点利用FOV补偿单目标分量的权重。仿真结果证实了提出的算法在各种场景中的最优性,提升了多目标跟踪的精度。展开更多
基金The National Natural Science Foundation of China under contract Nos 41276029 and 41321004the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography under contract No.SOEDZZ1404the National Basic Research Program(973 Program)of China under contract No.2013CB430302
文摘Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustment Kalman filter(EAKF) and sequential importance resampling particle filter(SIR-PF), using a well-known nonlinear and non-Gaussian model(Lorenz '63 model). The EAKF, which is a deterministic scheme of the ensemble Kalman filter(En KF), performs better than the classical(stochastic) En KF in a general framework. Comparison between the SIR-PF and the EAKF reveals that the former outperforms the latter if ensemble size is so large that can avoid the filter degeneracy, and vice versa. The impact of the probability density functions and effective ensemble sizes on assimilation performances are also explored. On the basis of comparisons between the SIR-PF and the EAKF, a mixture filter, called ensemble adjustment Kalman particle filter(EAKPF), is proposed to combine their both merits. Similar to the ensemble Kalman particle filter, which combines the stochastic En KF and SIR-PF analysis schemes with a tuning parameter, the new mixture filter essentially provides a continuous interpolation between the EAKF and SIR-PF. The same Lorenz '63 model is used as a testbed, showing that the EAKPF is able to overcome filter degeneracy while maintaining the non-Gaussian nature, and performs better than the EAKF given limited ensemble size.
文摘In the real sound environment, the observation data are usually contaminated by additional background noise of arbitrary distribution type. In order to estimate several evaluation quantities for specific signal based on the observed noisy data, it is fundamental to estimate the fluctuating wave form of the specific signal. On the other hand, the observation data are very often measured in a digital level form at discrete times. This is because some signal processing methods by utilizing a digital computer are indispensable for extracting exactly various kinds of statistical evaluation for the specific signal based on the quantized level data. In this study, a Bayesian filter matched to the complicated sound environment system is derived. First, in the real situation where the sound environment system is affected by background noise of arbitrary probability distribution, a stochastic system model with quantized observation is established. Next, two types of the recursive algorithm of Bayesian filter to estimate the unknown specific signal are theoretically proposed in the quantized level form. Finally, the effectiveness of the proposed theory is experimentally confirmed by applying it to the estimation problem of real sound environment.
基金supported by the National Natural Science Foundation of China(Grant No.40374054).
文摘To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals has been advanced. This signal processing technique has been proven effective and robust for affording access to dual-frequency GPS signals. This paper introduces the signal dynamics and measurement models, describes the W o D bit estimation method, and corrects the mistakes of direct estimation of W bit in current semi-codeless tracking. Median filter is chosen as a smoother to find the best measurements at the current time among the history and current information. The Bayesian filter is used to track the L2 P(Y) code phase and L2 carrier phase recursively.
文摘This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date,one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective,which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics(e.g., mean and covariance) conditioned on a system's measurement data.This article offers a systematic introduction to the Bayesian state estimation framework and reviews various Kalman filtering(KF)techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation to more complicated problems such as simultaneous state and parameter/input estimation.
文摘A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.
基金supported by the National High Technology Research and Development Program of China (No.2014AA7014061)the National Natural Science Foundation of China (No.61501484)
文摘It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB) approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB) filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD) filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer) filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated.
文摘为了在视域(field of view,FOV)不同的条件下实现对数量时变的不确定目标的最优跟踪,提出一种高斯混合概率假设密度(Gaussian mixture probability hypothesis density,GM-PHD)滤波器的去相关算术平均(arithmetic average,AA)融合算法。鉴于多目标AA融合被分解为多组单目标分量的合并,先通过重构贝叶斯融合推导出最优去相关估计融合,后将其用作单目标分量的合并方法。由于推导的去相关估计融合需要先验估计,设计了一个包含主滤波器的分层结构,以自动提供需要的先验估计。为了解决不同FOV导致的目标势低估问题,融合节点利用FOV补偿单目标分量的权重。仿真结果证实了提出的算法在各种场景中的最优性,提升了多目标跟踪的精度。