期刊文献+
共找到531篇文章
< 1 2 27 >
每页显示 20 50 100
Comparison and combination of EAKF and SIR-PF in the Bayesian filter framework 被引量:3
1
作者 SHEN Zheqi ZHANG Xiangming TANG Youmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第3期69-78,共10页
Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustme... Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustment Kalman filter(EAKF) and sequential importance resampling particle filter(SIR-PF), using a well-known nonlinear and non-Gaussian model(Lorenz '63 model). The EAKF, which is a deterministic scheme of the ensemble Kalman filter(En KF), performs better than the classical(stochastic) En KF in a general framework. Comparison between the SIR-PF and the EAKF reveals that the former outperforms the latter if ensemble size is so large that can avoid the filter degeneracy, and vice versa. The impact of the probability density functions and effective ensemble sizes on assimilation performances are also explored. On the basis of comparisons between the SIR-PF and the EAKF, a mixture filter, called ensemble adjustment Kalman particle filter(EAKPF), is proposed to combine their both merits. Similar to the ensemble Kalman particle filter, which combines the stochastic En KF and SIR-PF analysis schemes with a tuning parameter, the new mixture filter essentially provides a continuous interpolation between the EAKF and SIR-PF. The same Lorenz '63 model is used as a testbed, showing that the EAKPF is able to overcome filter degeneracy while maintaining the non-Gaussian nature, and performs better than the EAKF given limited ensemble size. 展开更多
关键词 data assimilation ensemble adjustment Kalman filter particle filter bayesian estimation ensemble adjustment Kalman particle filter
在线阅读 下载PDF
A Bayesian Filter for Sound Environment System with Quantized Observation*
2
作者 Hisako Orimoto Akira Ikuta 《Intelligent Information Management》 2018年第3期87-98,共12页
In the real sound environment, the observation data are usually contaminated by additional background noise of arbitrary distribution type. In order to estimate several evaluation quantities for specific signal based ... In the real sound environment, the observation data are usually contaminated by additional background noise of arbitrary distribution type. In order to estimate several evaluation quantities for specific signal based on the observed noisy data, it is fundamental to estimate the fluctuating wave form of the specific signal. On the other hand, the observation data are very often measured in a digital level form at discrete times. This is because some signal processing methods by utilizing a digital computer are indispensable for extracting exactly various kinds of statistical evaluation for the specific signal based on the quantized level data. In this study, a Bayesian filter matched to the complicated sound environment system is derived. First, in the real situation where the sound environment system is affected by background noise of arbitrary probability distribution, a stochastic system model with quantized observation is established. Next, two types of the recursive algorithm of Bayesian filter to estimate the unknown specific signal are theoretically proposed in the quantized level form. Finally, the effectiveness of the proposed theory is experimentally confirmed by applying it to the estimation problem of real sound environment. 展开更多
关键词 bayesian filter QUANTIZED OBSERVATION SOUND ENVIRONMENT
在线阅读 下载PDF
Smoother and Bayesian filter based semi-codeless tracking of dual-frequency GPS signals 被引量:5
3
作者 LIAO Bingyu YUAN Hong LIN Baojun 《Science in China(Series F)》 2006年第4期533-544,共12页
To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals ... To precisely determine the integrated orbit of the Chinese manned spacecraft mission, a smoother and Bayesian filter based technique for optimum semi-codeless tracking of the P(Y) code on dual-frequency GPS signals has been advanced. This signal processing technique has been proven effective and robust for affording access to dual-frequency GPS signals. This paper introduces the signal dynamics and measurement models, describes the W o D bit estimation method, and corrects the mistakes of direct estimation of W bit in current semi-codeless tracking. Median filter is chosen as a smoother to find the best measurements at the current time among the history and current information. The Bayesian filter is used to track the L2 P(Y) code phase and L2 carrier phase recursively. 展开更多
关键词 GPS P(Y) code W code A/S technology adapted median filter bayesian filter.
原文传递
Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon 被引量:12
4
作者 Huazhen Fang Ning Tian +2 位作者 Yebin Wang Meng Chu Zhou Mulugeta A. Haile 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期401-417,共17页
This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades o... This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date,one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective,which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics(e.g., mean and covariance) conditioned on a system's measurement data.This article offers a systematic introduction to the Bayesian state estimation framework and reviews various Kalman filtering(KF)techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation to more complicated problems such as simultaneous state and parameter/input estimation. 展开更多
关键词 Index Terms-Kalman filtering (KF) nonlinear bayesian esti-mation state estimation stochastic estimation.
在线阅读 下载PDF
Modified unscented particle filter for nonlinear Bayesian tracking 被引量:14
5
作者 Zhan Ronghui Xin Qin Wan Jianwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期7-14,共8页
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv... A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one. 展开更多
关键词 bayesian estimation modified unscented particle filter nonlinear filtering unscented Kalman filter
在线阅读 下载PDF
Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics 被引量:5
6
作者 Qiu Hao Huang Gaoming Gao Jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1378-1384,共7页
It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random... It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB) approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB) filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD) filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer) filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated. 展开更多
关键词 Labeled random finite set Multi-Bernoulli filter Multi-target tracking Parameter estimation Variational bayesian approximation
原文传递
一种基于变分贝叶斯理论的椭圆形扩展目标跟踪方法
7
作者 陈辉 王莉 +1 位作者 张天佑 张光华 《兰州理工大学学报》 北大核心 2025年第3期81-88,共8页
针对厚尾噪声条件下椭圆扩展目标跟踪问题,基于变分贝叶斯推断提出了一种鲁棒性学生t椭圆形扩展目标跟踪方法.首先,采用学生t分布对非高斯厚尾过程和量测噪声进行建模,利用K-L散度寻找最接近学生t分布的高斯分布,并将后验概率密度近似... 针对厚尾噪声条件下椭圆扩展目标跟踪问题,基于变分贝叶斯推断提出了一种鲁棒性学生t椭圆形扩展目标跟踪方法.首先,采用学生t分布对非高斯厚尾过程和量测噪声进行建模,利用K-L散度寻找最接近学生t分布的高斯分布,并将后验概率密度近似为高斯分布.其次,用服从逆威沙特分布的随机正定矩阵来描述椭圆形状大小和方向,然后基于分层高斯状态空间模型和变分贝叶斯方法推导出未知尺度矩阵和辅助随机变量,联合递推出目标的运动状态和形状扩展状态.最后,通过构建相应的仿真实验验证了所提算法的有效性和鲁棒性. 展开更多
关键词 扩展目标跟踪 厚尾噪声 变分贝叶斯滤波 随机矩阵
在线阅读 下载PDF
偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法 被引量:2
8
作者 邓洪高 余润华 +2 位作者 纪元法 吴孙勇 孙少帅 《电子与信息学报》 北大核心 2025年第1期156-166,共11页
针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏... 针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏差,将相邻时刻目标状态扩维以满足实时滤波需求,利用逆Wishart分布建模未知量测噪声协方差矩阵,从而建立目标状态、指示变量、噪声协方差矩阵的联合分布,并通过变分贝叶斯推断来求解各个参数的近似后验。为减小滤波负担,对扩维后的状态向量进行边缘化处理,结合容积卡尔曼滤波方法实现边缘化容积卡尔曼滤波跟踪。仿真实验结果表明,所提方法能够同时处理突变测量偏差和未知时变量测噪声,从而对目标进行有效跟踪。 展开更多
关键词 突变测量偏差 Beta-Bernoulli分布 逆Wishart分布 变分贝叶斯推断 边缘化容积卡尔曼滤波
在线阅读 下载PDF
无线传感网络高维时序数据状态估计算法研究
9
作者 邓俊华 屠敏 《传感技术学报》 北大核心 2025年第2期356-361,共6页
无线传感网络中数据量较大,准确估计存储节点中的数据状态,可以避免传感网络受高维度、冗余数据、网络状态等问题的干扰,进而提高传感网络的安全性。然而在传感网络中,对高维时序数据的状态估计一直是一个难点问题,为此,提出一种无线传... 无线传感网络中数据量较大,准确估计存储节点中的数据状态,可以避免传感网络受高维度、冗余数据、网络状态等问题的干扰,进而提高传感网络的安全性。然而在传感网络中,对高维时序数据的状态估计一直是一个难点问题,为此,提出一种无线传感网络高维时序数据状态估计算法。采用基于信息熵的PCA降维算法对传感节点中的高维时序数据进行降维处理,基于最优集成随机森林算法提取数据的特征,将提取的状态特征数据输入到贝叶斯估计模型中,并采用粒子滤波对模型求解,完成无线传感网络高维时序数据的状态估计。仿真结果表明:所提算法的估计时间始终在1.99 s以下,节点能耗小于22.1 J,估计结果与实际结果一致,具有良好的估计效果。 展开更多
关键词 无线传感网络 数据状态估计 贝叶斯估计模型 粒子滤波 高维时序数据 信息熵
在线阅读 下载PDF
基于贝叶斯算法优化IIR滤波器的HRTF建模 被引量:2
10
作者 昝天祥 周静雷 《自动化应用》 2025年第2期53-56,68,共5页
头相关传递函数(HRTF)可用于定位声源的空间和频谱特征。利用HRTF进行空间声重放,让用户能够在较低的计算成本和有限的计算资源条件下体验虚拟声学环境。提出了一种使用贝叶斯算法优化IIR滤波器进行HRTF建模的方法。首先,设计使用低通... 头相关传递函数(HRTF)可用于定位声源的空间和频谱特征。利用HRTF进行空间声重放,让用户能够在较低的计算成本和有限的计算资源条件下体验虚拟声学环境。提出了一种使用贝叶斯算法优化IIR滤波器进行HRTF建模的方法。首先,设计使用低通、高通、峰值3种滤波器级联组成IIR滤波器;然后,使用贝叶斯算法对峰值滤波器的相关参数进行寻优,得到最优结果;最后,在CIPIC数据集中进行训练,并在其他两种HRTF数据集中进行验证,测试所提方法的泛化性能。实验结果表明,所提方法能够有效对HRTF进行拟合建模,所得到的拟合HRTF的平均谱失真(SD)为5.23dB,并且在3个数据集中都达到了良好的效果,误差不大于0.5dB,满足进行双耳虚拟重放的要求。 展开更多
关键词 空间音频 头相关传输函数 IIR滤波器 贝叶斯算法
在线阅读 下载PDF
基于Naive Bayesian算法的客户端邮件过滤器的实现 被引量:2
11
作者 左瑞欣 徐惠民 吴聪聪 《计算机工程与设计》 CSCD 北大核心 2006年第7期1161-1163,共3页
“垃圾”邮件是Internet上面临急待解决的问题。Naive Bayesian过滤器由于其简单高效性在文本分类中应用较广,重点研究了Naive Bayesian算法,给出了一个“垃圾”邮件过滤器,依据邮件的内容而不是通过设置规则来过滤邮件,并通过实验论证... “垃圾”邮件是Internet上面临急待解决的问题。Naive Bayesian过滤器由于其简单高效性在文本分类中应用较广,重点研究了Naive Bayesian算法,给出了一个“垃圾”邮件过滤器,依据邮件的内容而不是通过设置规则来过滤邮件,并通过实验论证了它在客户端过滤邮件的可行性和有效性。 展开更多
关键词 “垃圾”邮件 特征抽取 向量空间模型 文本分类 NAIVE bayesian过滤器
在线阅读 下载PDF
基于模糊集的无线通信网络码间干扰时序抑制算法 被引量:2
12
作者 滕雨彤 《现代电子技术》 北大核心 2025年第3期13-18,共6页
受到码间干扰影响,无线通信网络的通信传输过程不够稳定且存在一定风险,而信道状态的不确定性和时变性,增加了干扰抑制的实时性,由此,提出基于模糊集的无线通信网络码间干扰时序抑制算法。建立无线通信网络通信信道模型并展开信道多径... 受到码间干扰影响,无线通信网络的通信传输过程不够稳定且存在一定风险,而信道状态的不确定性和时变性,增加了干扰抑制的实时性,由此,提出基于模糊集的无线通信网络码间干扰时序抑制算法。建立无线通信网络通信信道模型并展开信道多径特性测量,以分析无线通信网络中信道的行为特性;基于该特性,采用基于贝叶斯滤波的信道估计方法实时跟踪并准确估计信道状态,为码间干扰抑制提供基础;将估计结果作为输入,选用基于模糊神经网络的盲均衡算法,通过模糊集理论和盲均衡器实现码间干扰时序抑制,增强无线通信网络性能。实验结果表明,所提方法可以有效降低码间干扰的影响,为无线通信网络的稳定传输提供有力的保障。 展开更多
关键词 信道模型 多径特性测量 贝叶斯滤波 信道估计 模糊神经网络 盲均衡器 模糊集 码间干扰抑制
在线阅读 下载PDF
免微分非线性Bayesian滤波方法评述 被引量:12
13
作者 程水英 邹继伟 汤鹏 《宇航学报》 EI CAS CSCD 北大核心 2009年第3期843-857,876,共16页
以非线性递推Bayesian滤波问题的求解及其历史渊源为起点,分两类对各种免微分非线性Bayesian滤波方法或免微分方法的原理和算法进行了评述:一类是以线性最小均方误差最优估计子为特点的免微分高斯滤波,包括无味卡尔曼滤波、均差滤波器... 以非线性递推Bayesian滤波问题的求解及其历史渊源为起点,分两类对各种免微分非线性Bayesian滤波方法或免微分方法的原理和算法进行了评述:一类是以线性最小均方误差最优估计子为特点的免微分高斯滤波,包括无味卡尔曼滤波、均差滤波器、中心差分滤波器和Gauss-Hermite滤波器或积分卡尔曼滤波器;另一类是后验密度数值逼近免微分方法,包括栅格法(GBMs)与近似栅格法、矩近似法和以粒子滤波为代表的Monte Carlo方法。其中还包括了作者的一些最新研究成果,如迭代UKF算法、裂变自举PF算法和关于粒子滤波算法有限收敛界的概念等。之后从加权统计线性回归的角度对两类免微分方法进行了统一认识,统一为以数值方法为特点的广义PF。为了建立一个关于各种免微分算法性能的整体印象,论文还通过一个复杂的递推非线性滤波估计例子,用MonteCarlo仿真实验的方法对7种典型的免微分方法和和传统的EKF算法进行了比较研究。最后对两类免微分方法进行了简单的比较,并指出了进一步研究的方向。 展开更多
关键词 非线性估计 递推bayesian滤波 扩展卡尔曼滤波 高斯滤波 无味变换 无味卡尔曼滤波 均差 滤波器 中心差分滤波器 Gauss—Hermite滤波器 积分卡尔曼滤波器 迭代无味卡尔曼滤波 栅格法 近似栅格 矩近似法 Monte CARLO方法 粒子滤波 裂变自举粒子滤波 加权统计线性回归
在线阅读 下载PDF
风力机叶片剩余使用寿命预测方法研究 被引量:1
14
作者 刘军 曹文翱 +1 位作者 夏嘉辰 马琛凯 《自动化仪表》 2025年第8期22-28,共7页
针对现有叶片剩余使用寿命(RUL)预测方法存在误差大、计算复杂的问题,提出一种考虑叶片疲劳失效模式的RUL预测方法。首先,建立叶片损伤模型,在基本运行条件下观测裂纹扩展过程。然后,针对裂纹扩展的非线性和不确定性,采用无迹卡尔曼滤... 针对现有叶片剩余使用寿命(RUL)预测方法存在误差大、计算复杂的问题,提出一种考虑叶片疲劳失效模式的RUL预测方法。首先,建立叶片损伤模型,在基本运行条件下观测裂纹扩展过程。然后,针对裂纹扩展的非线性和不确定性,采用无迹卡尔曼滤波算法进行预测。通过融合疲劳失效模式与裂纹观测数据,提升裂纹扩展趋势的跟踪精度。最后,使用国家可再生能源实验室(NREL)5 MW风力机开展仿真试验。试验设定不同平均风速与初始裂纹长度。仿真结果显示,裂纹扩展预测结果与观测数据吻合度为98.75%,RUL预测误差大幅降低。对比分析结果表明,所提方法能有效抑制非线性因素干扰、减少计算时长,可有效应用于裂纹预测。该研究能为风力机叶片健康管理提供理论支撑与工程应用参考。 展开更多
关键词 风力机叶片 裂纹扩展 无迹卡尔曼滤波 剩余使用寿命 贝叶斯方法 雨流计数
在线阅读 下载PDF
基于自然梯度的非线性变分贝叶斯滤波算法 被引量:1
15
作者 胡玉梅 潘泉 +2 位作者 邓豹 郭振 陈立峰 《自动化学报》 北大核心 2025年第2期427-444,共18页
在统计流形空间中,从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler(KL)散度最小化问题,同时也可以转化为变分置信下界的最大化问题.为了提升非线性系统状态估计的精度,在高斯系... 在统计流形空间中,从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler(KL)散度最小化问题,同时也可以转化为变分置信下界的最大化问题.为了提升非线性系统状态估计的精度,在高斯系统假设条件下结合变分贝叶斯(Variational Bayes,VB)推断和Fisher信息矩阵推导出置信下界的自然梯度,并通过分析其信息几何意义,阐述在统计流形空间中置信下界沿其方向不断迭代增大,实现变分分布与后验分布的“紧密”近似;在此基础上,以状态估计及其误差协方差作为变分超参数,结合最优估计理论给出一种基于自然梯度的非线性变分贝叶斯滤波算法;最后,通过天基光学传感器量测条件下近地轨道卫星跟踪定轨和纯角度被动传感器量测条件下运动目标跟踪仿真实验验证,与对比算法相比,所提算法具有更高的精度. 展开更多
关键词 非线性滤波 信息几何 变分贝叶斯推断 自然梯度 Fisher信息矩阵
在线阅读 下载PDF
基于认知频控阵的预警机空-时-频协同反无源定位
16
作者 张晶 王博 《航空兵器》 北大核心 2025年第5期121-130,共10页
本文针对现代空战环境中预警机面临的电磁隐蔽性与探测效能平衡问题,系统研究了基于认知频控阵的预警机空-时-频协同反无源定位技术。通过深入分析现役预警机雷达在复杂电磁环境下的技术瓶颈,揭示了传统相控阵雷达在对抗无源定位系统时... 本文针对现代空战环境中预警机面临的电磁隐蔽性与探测效能平衡问题,系统研究了基于认知频控阵的预警机空-时-频协同反无源定位技术。通过深入分析现役预警机雷达在复杂电磁环境下的技术瓶颈,揭示了传统相控阵雷达在对抗无源定位系统时的局限性,尤其是分布式干扰机协同欺骗和特殊波形缩减信号特征方法的不足。本文创新性地提出了频控阵多维参数调控理论框架,构建了包含空域、时域和频域的多维信号模型,阐明了无源定位误差的产生机制和传播规律。与现有技术相比,本文方法的核心在于频控阵空-时-频协同优化模型的建立,以及基于贝叶斯滤波的认知反无源定位算法的开发。该算法通过实时环境感知和动态参数调整,实现了“探测即干扰、定位即欺骗”的新范式,有效对抗无源定位系统,同时保持对高速机动目标的稳定跟踪。此外,本文强化了相位中心扰动模型的原创性,通过非线性频偏设计克服了时域截断法的不足。仿真实验验证了所提方法的有效性,显著提升了预警机在复杂电磁环境下的战场生存能力。 展开更多
关键词 认知频控阵 预警机 空-时-频协同 反无源定位 贝叶斯滤波
在线阅读 下载PDF
基于有监督Bayesian网络的垃圾邮件过滤 被引量:8
17
作者 刘震 周明天 《计算机应用》 CSCD 北大核心 2006年第3期558-561,共4页
对影响邮件特性的邮件报文格式作了仔细的分析并对垃圾邮件的特征进行了分类归纳,在此基础上构建了一个有监督的Bayesian邮件分类网络。通过对该网络作Bayesian参数估计,实现了判定邮件类别的不确定推理。对不同邮件测试集的在线学习试... 对影响邮件特性的邮件报文格式作了仔细的分析并对垃圾邮件的特征进行了分类归纳,在此基础上构建了一个有监督的Bayesian邮件分类网络。通过对该网络作Bayesian参数估计,实现了判定邮件类别的不确定推理。对不同邮件测试集的在线学习试验结果表明,有监督Bayesian邮件分类网络能够有效地实现垃圾邮件的相对完备特征学习,改善邮件过滤的准确率。 展开更多
关键词 垃圾邮件 bayesian网络 邮件过滤 参数估计
在线阅读 下载PDF
量测噪声未知Markov跳变系统变分贝叶斯辅助粒子滤波
18
作者 程承 毛德华 +2 位作者 赵斌 孙瑾秋 周军 《信号处理》 北大核心 2025年第7期1153-1164,共12页
Markov跳变系统估计问题是根据带有噪声的量测序列来估计系统状态与运行模态。在实际应用中,受自身工作状态改变以及外界随机干扰的影响,传感器量测噪声发生变化导致Markov跳变系统模型失准,从而影响系统状态与运行模态估计精度。为了... Markov跳变系统估计问题是根据带有噪声的量测序列来估计系统状态与运行模态。在实际应用中,受自身工作状态改变以及外界随机干扰的影响,传感器量测噪声发生变化导致Markov跳变系统模型失准,从而影响系统状态与运行模态估计精度。为了适应传感器量测噪声变化,本文将Markov跳变系统量测噪声协方差阵建模成一个先验概率分布为逆威沙特分布且随时间变化的离散随机过程,并定义了分布超参数传递方程。针对Markov跳变系统量测噪声参数未知条件下系统状态估计问题,本文提出了一种新的变分贝叶斯辅助粒子滤波方法,以序贯的方式分别得到Markov跳变系统运行模态、系统状态和量测噪声协方差阵近似后验概率分布。该方法首先根据边缘化粒子滤波原理,从Markov跳变系统状态、运行模态以及量测噪声方差阵的联合后验分布中边缘化运行模态变量;随后利用系统状态和量测噪声协方差阵的预测近似先验分布以及辅助粒子滤波实现对系统运行模态后验概率分布的近似;最后基于变分贝叶斯推断得到运行模态条件下系统状态和量测噪声协方差阵近似后验概率分布。在目标跟踪仿真场景下,对比实验结果表明,在计算复杂度适当增加情况下,本文算法能够保证Markov跳变系统运行模态辨识准确率,状态和量测噪声参数估计精度优于其他方法。 展开更多
关键词 MARKOV跳变系统 状态估计 辅助粒子滤波 变分贝叶斯推断
在线阅读 下载PDF
基于动态线性分段表示的钻进参数围岩分级特征提取方法 被引量:1
19
作者 何永义 王明年 +5 位作者 凌学鹏 易文豪 夏覃永 李泽星 童建军 赵思光 《中国铁道科学》 北大核心 2025年第1期96-106,共11页
依托来自宜昌—郑万高铁联络线隧道工程的1 765份钻进参数样本,在分析钻进参数时序曲线特征的基础上,结合贝叶斯置信区间检验方法、动态线性分段表示方法、卡尔曼滤波方法和线性分段均值处理方法,提出一种基于动态线性分段表示的钻进参... 依托来自宜昌—郑万高铁联络线隧道工程的1 765份钻进参数样本,在分析钻进参数时序曲线特征的基础上,结合贝叶斯置信区间检验方法、动态线性分段表示方法、卡尔曼滤波方法和线性分段均值处理方法,提出一种基于动态线性分段表示的钻进参数围岩分级特征提取方法;对比该方法处理前后掌子面钻进参数样本的离散性和差异性,以及采用该方法处理前后6种不同机器学习算法下的围岩分级模型准确性,验证该方法的应用效果。结果表明:钻进参数时序体现出明显的纵向分段、区间波动和随机离散特征;采用该方法处理后,相同围岩级别下的样本数据标准差平均降低28.72%~82.68%,不同围岩级别下的样本类间距离均值提升66.79%~77.37%,6种机器学习算法下围岩分级模型得到的分级准确率由85.3%~88.8%提高到88.1%~89.9%。作为一种基础数据处理方法,该方法能够避免各种非地质因素对围岩分级精度的影响,较好地体现了钻进参数和围岩质量间的良好响应关系,并提升了具体实践中的围岩质量评价准确性。 展开更多
关键词 隧道 围岩分级 钻进参数 时间序列 动态线性分段表示 贝叶斯置信区间检验 卡尔曼滤波
在线阅读 下载PDF
最优算术平均融合及其在非同视域场景的应用
20
作者 薛昱 冯西安 《系统工程与电子技术》 北大核心 2025年第6期1739-1745,共7页
为了在视域(field of view,FOV)不同的条件下实现对数量时变的不确定目标的最优跟踪,提出一种高斯混合概率假设密度(Gaussian mixture probability hypothesis density,GM-PHD)滤波器的去相关算术平均(arithmetic average,AA)融合算法... 为了在视域(field of view,FOV)不同的条件下实现对数量时变的不确定目标的最优跟踪,提出一种高斯混合概率假设密度(Gaussian mixture probability hypothesis density,GM-PHD)滤波器的去相关算术平均(arithmetic average,AA)融合算法。鉴于多目标AA融合被分解为多组单目标分量的合并,先通过重构贝叶斯融合推导出最优去相关估计融合,后将其用作单目标分量的合并方法。由于推导的去相关估计融合需要先验估计,设计了一个包含主滤波器的分层结构,以自动提供需要的先验估计。为了解决不同FOV导致的目标势低估问题,融合节点利用FOV补偿单目标分量的权重。仿真结果证实了提出的算法在各种场景中的最优性,提升了多目标跟踪的精度。 展开更多
关键词 概率假设密度滤波器 去相关 贝叶斯融合 分层结构 主滤波器
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部