期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bayesian discriminant analysis for prediction of coal and gas outbursts and application 被引量:11
1
作者 WANG Chao WANG Enyuan XU Jiankun LIU Xiaofei LING Li 《Mining Science and Technology》 EI CAS 2010年第4期520-523,541,共5页
Based on the principle of Bayesian discriminant analysis, we established a model of Bayesian discriminant analysis for predicting coal and gas outbursts. We selected five major indices which affect outbursts, i.e., in... Based on the principle of Bayesian discriminant analysis, we established a model of Bayesian discriminant analysis for predicting coal and gas outbursts. We selected five major indices which affect outbursts, i.e., initial speed of methane diffusion, a consistent coal coefficient, gas pressure, destructive style of coal and mining depth, as discriminating factors of the model. In our model, we divided the type of coal and gas outbursts into four grades regarded as four normal populations. We then obtained the corresponding discriminant functions through training a set of data from engineering examples as learning samples and evaluated their criteria by a back substitution method to verify the optimal properties of the model. Finally, we applied the model to the prediction of coal and gas outbursts in the Yunnan Enhong Mine. Our results coincided completely with the actual situation. These results show that a model of Bayesian discriminant analysis has excellent recognition performance, high prediction accuracy and a low error rate and is an effective method to predict coal and gas outbursts. 展开更多
关键词 bayesian discriminant analysis coal and gas outbursts learning samples PREDICTION
在线阅读 下载PDF
Log interpretation of carbonate rocks based on petrophysical facies constraints
2
作者 Hui Xu Hongwei Xiao +4 位作者 Guofeng Cheng Nannan Liu Jindong Cui Xing Shi Shangping Chen 《Energy Geoscience》 EI 2024年第3期39-51,共13页
The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in th... The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in the study area,combined with the current trends and advances in well log interpretation techniques for carbonate reservoirs,a log interpretation technology route of“geological information constraint+deep learning”was developed.The principal component analysis(PCA)was employed to establish lithology identification criteria with an accuracy of 91%.The Bayesian stepwise discriminant method was used to construct a sedimentary microfacies identification method with an accuracy of 90.5%.Based on production data,the main lithologies and sedimentary microfacies of effective reservoirs were determined,and 10 petrophysical facies with effective reservoir characteristics were identified.Constrained by petrophysical facies,the mean interpretation error of porosity compared to core analysis results is 2.7%,and the ratio of interpreted permeability to core analysis is within one order of magnitude,averaging 3.6.The research results demonstrate that deep learning algorithms can uncover the correlation in carbonate reservoir well logging data.Integrating geological and production data and selecting appropriate machine learning algorithms can significantly improve the accuracy of well log interpretation for carbonate reservoirs. 展开更多
关键词 Carbonate reservoir Principal component analysis(PCA) bayesian stepwise discriminant analysis Petrophysical facies Well log interpretation
在线阅读 下载PDF
Probabilistic Methods in Multi-Class Brain-Computer Interface 被引量:1
3
作者 Ping Yang Xu Lei Tie-Jun Liu Peng Xu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期12-16,共5页
Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discr... Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discriminant analysis with probabilistic output (PBLDA). A comparative evaluation of these two methods is conducted. The results shows that: 1) probabilistie information can improve the performance of BCI for subjects with high kappa coefficient, and 2) PSVM usually results in a stable kappa coefficient whereas PBLDA is more efficient in estimating the model parameters. 展开更多
关键词 bayesian linear discriminant analysis brain-computer interface kappa coefficient support vector machine.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部