The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is propose...The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is proposed. In the proposed method, the Markov Chain Monte Carlo (MCMC) methods are employed for the blind Bayesian detection without channel es- timation. Meanwhile, with the exploitation of the characteristics of OFDM systems, two methods are employed to improve the convergence rate and enhance the efficiency of MCMC algorithms. One is the integration of the posterior distribution function with respect to the associated channel parameters, which is involved in the derivation of the objective distribution function; the other is the intra-symbol differential coding for the elimination of the bimodality problem resulting from the presence of unknown fading channels. Moreover, no matrix inversion is needed with the use of the orthogonality property of OFDM modulation and hence the computational load is significantly reduced. Computer simulation results show the effectiveness of the fast convergent Monte Carlo receiver.展开更多
In this letter, the detection of asynchronous DS-CDMA signal with multipath fading and interference from neighboring cells is studied. A novel multiuser detector based on Gibbs sampler is proposed, in which Gibbs samp...In this letter, the detection of asynchronous DS-CDMA signal with multipath fading and interference from neighboring cells is studied. A novel multiuser detector based on Gibbs sampler is proposed, in which Gibbs sampler is employed to perform the Bayesian multiuser detection according to the linear group-blind decorrelator output. Since Gibbs sampler is dependent of parameter estimation that can be improved by the output of the detector, an enhanced Gibbs sampler based detector using the improved parameter estimation is put forward. The novel multiuser detection technique has the advantages of high performance and wide applications. Computer simulations show its effectiveness.展开更多
In this paper,a Bayesian sea ice detection algorithm is first used based on the HY-2A/SCAT data,and a backpropagation(BP)neural network is used to classify the Arctic sea ice type.During the implementation of the Baye...In this paper,a Bayesian sea ice detection algorithm is first used based on the HY-2A/SCAT data,and a backpropagation(BP)neural network is used to classify the Arctic sea ice type.During the implementation of the Bayesian sea ice detection algorithm,linear sea ice model parameters and the backscatter variance suitable for HY-2A/SCAT were proposed.The sea ice extent obtained by the Bayesian sea ice detection algorithm was projected on a 12.5 km grid sea ice map and validated by the Advanced Microwave Scanning Radiometer 2(AMSR2)15%sea ice concentration data.The sea ice extent obtained by the Bayesian sea ice detection al-gorithm was found to be in good agreement with that of the AMSR2 during the ice growth season.Meanwhile,the Bayesian sea ice detection algorithm gave a wider ice edge than the AMSR2 during the ice melting season.For the sea ice type classification,the BP neural network was used to classify the Arctic sea ice type(multi-year and first-year ice)from January to May and October to De-cember in 2014.Comparison results between the HY-2A/SCAT sea ice type and Equal-Area Scalable Earth Grid(EASE-Grid)sea ice age data showed that the HY-2A/SCAT multi-year ice extent variation had the same trend as the EASE-Grid data.Classification errors,defined as the ratio of the mismatched sea ice type points between HY-2A/SCAT and EASE-Grid to the total sea ice points,were less than 12%,and the average classification error was 8.6%for the study period,which indicated that the BP neural network classification was a feasible algorithm for HY-2A/SCAT sea ice type classification.展开更多
基金Partially supported by the National Natural Science Foundation of China (No.60172028).
文摘The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is proposed. In the proposed method, the Markov Chain Monte Carlo (MCMC) methods are employed for the blind Bayesian detection without channel es- timation. Meanwhile, with the exploitation of the characteristics of OFDM systems, two methods are employed to improve the convergence rate and enhance the efficiency of MCMC algorithms. One is the integration of the posterior distribution function with respect to the associated channel parameters, which is involved in the derivation of the objective distribution function; the other is the intra-symbol differential coding for the elimination of the bimodality problem resulting from the presence of unknown fading channels. Moreover, no matrix inversion is needed with the use of the orthogonality property of OFDM modulation and hence the computational load is significantly reduced. Computer simulation results show the effectiveness of the fast convergent Monte Carlo receiver.
文摘In this letter, the detection of asynchronous DS-CDMA signal with multipath fading and interference from neighboring cells is studied. A novel multiuser detector based on Gibbs sampler is proposed, in which Gibbs sampler is employed to perform the Bayesian multiuser detection according to the linear group-blind decorrelator output. Since Gibbs sampler is dependent of parameter estimation that can be improved by the output of the detector, an enhanced Gibbs sampler based detector using the improved parameter estimation is put forward. The novel multiuser detection technique has the advantages of high performance and wide applications. Computer simulations show its effectiveness.
基金supported by the National Natural Science Foundation of China(No.42030406)。
文摘In this paper,a Bayesian sea ice detection algorithm is first used based on the HY-2A/SCAT data,and a backpropagation(BP)neural network is used to classify the Arctic sea ice type.During the implementation of the Bayesian sea ice detection algorithm,linear sea ice model parameters and the backscatter variance suitable for HY-2A/SCAT were proposed.The sea ice extent obtained by the Bayesian sea ice detection algorithm was projected on a 12.5 km grid sea ice map and validated by the Advanced Microwave Scanning Radiometer 2(AMSR2)15%sea ice concentration data.The sea ice extent obtained by the Bayesian sea ice detection al-gorithm was found to be in good agreement with that of the AMSR2 during the ice growth season.Meanwhile,the Bayesian sea ice detection algorithm gave a wider ice edge than the AMSR2 during the ice melting season.For the sea ice type classification,the BP neural network was used to classify the Arctic sea ice type(multi-year and first-year ice)from January to May and October to De-cember in 2014.Comparison results between the HY-2A/SCAT sea ice type and Equal-Area Scalable Earth Grid(EASE-Grid)sea ice age data showed that the HY-2A/SCAT multi-year ice extent variation had the same trend as the EASE-Grid data.Classification errors,defined as the ratio of the mismatched sea ice type points between HY-2A/SCAT and EASE-Grid to the total sea ice points,were less than 12%,and the average classification error was 8.6%for the study period,which indicated that the BP neural network classification was a feasible algorithm for HY-2A/SCAT sea ice type classification.