期刊文献+
共找到150篇文章
< 1 2 8 >
每页显示 20 50 100
Establishment and reliability evaluation of the design space for HPLC analysis of six alkaloids in Coptis chinensis(Huanglian) using Bayesian approach 被引量:9
1
作者 DAI Sheng-Yun XU Bing +4 位作者 ZHANG Yi LI Jian-Yu SUN Fei SHI Xin-Yuan QIAO Yan-Jiang 《Chinese Journal of Natural Medicines》 SCIE CAS CSCD 2016年第9期697-708,共12页
Coptis chinensis(Huanglian) is a commonly used traditional Chinese medicine(TCM) herb and alkaloids are the most important chemical constituents in it. In the present study, an isocratic reverse phase high performance... Coptis chinensis(Huanglian) is a commonly used traditional Chinese medicine(TCM) herb and alkaloids are the most important chemical constituents in it. In the present study, an isocratic reverse phase high performance liquid chromatography(RP-HPLC) method allowing the separation of six alkaloids in Huanglian was for the first time developed under the quality by design(Qb D) principles. First, five chromatographic parameters were identified to construct a Plackett-Burman experimental design. The critical resolution, analysis time, and peak width were responses modeled by multivariate linear regression. The results showed that the percentage of acetonitrile, concentration of sodium dodecyl sulfate, and concentration of potassium phosphate monobasic were statistically significant parameters(P < 0.05). Then, the Box-Behnken experimental design was applied to further evaluate the interactions between the three parameters on selected responses. Full quadratic models were built and used to establish the analytical design space. Moreover, the reliability of design space was estimated by the Bayesian posterior predictive distribution. The optimal separation was predicted at 40% acetonitrile, 1.7 g·m L-1of sodium dodecyl sulfate and 0.03 mol·m L-1 of potassium phosphate monobasic. Finally, the accuracy profile methodology was used to validate the established HPLC method. The results demonstrated that the Qb D concept could be efficiently used to develop a robust RP-HPLC analytical method for Huanglian. 展开更多
关键词 Coptis chinensis Quality by design(Qb D) bayesian approach Analytical design space Accuracy profile
原文传递
Bayesian optimal design of step stress accelerated degradation testing 被引量:2
2
作者 Xiaoyang Li Mohammad Rezvanizaniani +2 位作者 Zhengzheng Ge Mohamed Abuali Jay Lee 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期502-513,共12页
This study presents a Bayesian methodology for de- signing step stress accelerated degradation testing (SSADT) and its application to batteries. First, the simulation-based Bayesian de- sign framework for SSADT is p... This study presents a Bayesian methodology for de- signing step stress accelerated degradation testing (SSADT) and its application to batteries. First, the simulation-based Bayesian de- sign framework for SSADT is presented. Then, by considering his- torical data, specific optimal objectives oriented Kullback-Leibler (KL) divergence is established. A numerical example is discussed to illustrate the design approach. It is assumed that the degrada- tion model (or process) follows a drift Brownian motion; the accele- ration model follows Arrhenius equation; and the corresponding parameters follow normal and Gamma prior distributions. Using the Markov Chain Monte Carlo (MCMC) method and WinBUGS software, the comparison shows that KL divergence is better than quadratic loss for optimal criteria. Further, the effect of simulation outiiers on the optimization plan is analyzed and the preferred sur- face fitting algorithm is chosen. At the end of the paper, a NASA lithium-ion battery dataset is used as historical information and the KL divergence oriented Bayesian design is compared with maxi- mum likelihood theory oriented locally optimal design. The results show that the proposed method can provide a much better testing plan for this engineering application. 展开更多
关键词 accelerated testing bayesian theory KL divergence degradation optimal design battery.
在线阅读 下载PDF
Bayesian Variable Selection for Mixture Process Variable Design Experiment 被引量:1
3
作者 Sadiah M. A. Aljeddani 《Open Journal of Modelling and Simulation》 2022年第4期391-416,共26页
This paper discussed Bayesian variable selection methods for models from split-plot mixture designs using samples from Metropolis-Hastings within the Gibbs sampling algorithm. Bayesian variable selection is easy to im... This paper discussed Bayesian variable selection methods for models from split-plot mixture designs using samples from Metropolis-Hastings within the Gibbs sampling algorithm. Bayesian variable selection is easy to implement due to the improvement in computing via MCMC sampling. We described the Bayesian methodology by introducing the Bayesian framework, and explaining Markov Chain Monte Carlo (MCMC) sampling. The Metropolis-Hastings within Gibbs sampling was used to draw dependent samples from the full conditional distributions which were explained. In mixture experiments with process variables, the response depends not only on the proportions of the mixture components but also on the effects of the process variables. In many such mixture-process variable experiments, constraints such as time or cost prohibit the selection of treatments completely at random. In these situations, restrictions on the randomisation force the level combinations of one group of factors to be fixed and the combinations of the other group of factors are run. Then a new level of the first-factor group is set and combinations of the other factors are run. We discussed the computational algorithm for the Stochastic Search Variable Selection (SSVS) in linear mixed models. We extended the computational algorithm of SSVS to fit models from split-plot mixture design by introducing the algorithm of the Stochastic Search Variable Selection for Split-plot Design (SSVS-SPD). The motivation of this extension is that we have two different levels of the experimental units, one for the whole plots and the other for subplots in the split-plot mixture design. 展开更多
关键词 Variable Selection bayesian Analysis Mixture Experiment Split-Plot design
在线阅读 下载PDF
Reliability-based design in rock engineering: Application of Bayesian regression methods to rock strength data 被引量:3
4
作者 Nezam Bozorgzadeh John P.Harrison 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第3期612-627,共16页
Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) str... Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) strength criterion within the RBD framework, and presents three distinct analyses using a Bayesian approach. Firstly, a compilation of intact compressive strength test data for six rock types is used to examine uncertainty and variability in the estimated H-B parameters m and σc, and corresponding predicted axial strength. The results suggest that within- and between-rock type variabilities are so large that these parameters need to be determined from rock testing campaigns, rather than reference values being used. The second analysis uses an extensive set of compressive and tensile (both direct and indirect) strength data for a granodiorite, together with a new Bayesian regression model, to develop joint probability distributions of m and σc suitable for use in RBD. This analysis also shows how compressive and indirect tensile strength data may be robustly used to fit an H-B criterion. The third analysis uses the granodiorite data to investigate the important matter of developing characteristic strength criteria. Using definitions from Eurocode 7, a formal Bayesian interpretation of characteristic strength is proposed and used to analyse strength data to generate a characteristic criterion. These criteria are presented in terms of characteristic parameters mk and σck, the values of which are shown to depend on the testing regime used to obtain the strength data. The paper confirms that careful use of appropriate Bayesian statistical analysis allows the H-B criterion to be brought within the framework of RBD. It also reveals that testing guidelines such as the International Society for Rock Mechanics and Rock Engineering (ISRM) suggested methods will require modification in order to support RBD. Importantly, the need to fully understand the implications of uncertainty in nonlinear strength criteria is identified. 展开更多
关键词 Reliability-based design(RBD) Hoek-Brown(HeB)criterion bayesian regression Indirect TENSILE STRENGTH Characteristic STRENGTH CRITERION
在线阅读 下载PDF
Experimental Design of Measuring Soil-Water Characteristic Curve of Unsaturated Soil Using Bayesian Approach
5
作者 Shaolin Ding 《World Journal of Engineering and Technology》 2024年第4期996-1007,共12页
Soil-water characteristic curve (SWCC) is significant to estimate the site-specific unsaturated soil properties (such as unsaturated shear strength and coefficient of permeability) for geotechnical analyses involving ... Soil-water characteristic curve (SWCC) is significant to estimate the site-specific unsaturated soil properties (such as unsaturated shear strength and coefficient of permeability) for geotechnical analyses involving unsaturated soils. Determining SWCC can be achieved by fitting data points obtained according to the prescribed experimental scheme, which is specified by the number of measuring points and their corresponding values of the control variable. The number of measuring points is limited since direct measurement of SWCC is often costly and time-consuming. Based on the limited number of measuring points, the estimated SWCC is unavoidably associated with uncertainties, which depends on measurement data obtained from the prescribed experimental scheme. Therefore, it is essential to plan the experimental scheme so as to reduce the uncertainty in the estimated SWCC. This study presented a Bayesian approach, called OBEDO, for probabilistic experimental design optimization of measuring SWCC based on the prior knowledge and information of testing apparatus. The uncertainty in estimated SWCC is quantified and the optimal experimental scheme with the maximum expected utility is determined by Subset Simulation optimization (SSO) in candidate experimental scheme space. The proposed approach is illustrated using an experimental design example given prior knowledge and the information of testing apparatus and is verified based on a set of real loess SWCC data, which were used to generate random experimental schemes to mimic the arbitrary arrangement of measuring points during SWCC testing in practice. Results show that the arbitrary arrangement of measuring points of SWCC testing is hardly superior to the optimal scheme obtained from OBEDO in terms of the expected utility. The proposed OBEDO approach provides a rational tool to optimize the arrangement of measuring points of SWCC test so as to obtain SWCC measurement data with relatively high expected utility for uncertainty reduction. 展开更多
关键词 bayesian Approach Subset Simulation Optimization Probabilistic Experiment design SWCC Expected Utility
在线阅读 下载PDF
基于Bayesian的测试性虚实一体化试验方案的设计 被引量:1
6
作者 刘瑛 刘冠军 +2 位作者 邱静 张勇 王超 《测试技术学报》 2014年第6期461-466,共6页
实物试验与虚拟试验相结合是测试性试验的发展趋势.经典Bayesian样本量确定方法仅能确定单一试验类型样本量,不满足一体化试验方案设计要求,本文针对此问题,引入了设计效应指标,利用测试性虚拟试验可信度和Bayesian最大后验区间(HPD)平... 实物试验与虚拟试验相结合是测试性试验的发展趋势.经典Bayesian样本量确定方法仅能确定单一试验类型样本量,不满足一体化试验方案设计要求,本文针对此问题,引入了设计效应指标,利用测试性虚拟试验可信度和Bayesian最大后验区间(HPD)平均长度构造设计效应,建立虚实样本等效模型,将虚实一体化试验样本转换为实物试验样本,进而给出了不计虚拟试验代价的测试性虚实结合试验方案设计方法.最后针对某装备控制系统舵伺服子系统提出的测试性指标评估要求,利用本文提出的方法设计试验方案,分析了试验方案与虚拟样机可信度的变化关系,验证了本文方法能有效减小实物试验样本量. 展开更多
关键词 测试性虚拟试验 虚实一体化试验方案 bayesian方法 设计效应
在线阅读 下载PDF
F_(2:3)设计全基因组标记的Bayesian分析
7
作者 万素琴 邵艳华 +1 位作者 袁有禄 章元明 《作物学报》 CAS CSCD 北大核心 2007年第12期1943-1948,共6页
数量性状的遗传率低时,常采用F2:3设计进行遗传分析,但往往忽略异质家系内QTL的混合分布特性。同时,用多QTL模型检测QTL会提高QTL检测的功效。因此,本文在利用F2:3设计异质F2:3家系内QTL混合分布特性基础上,提出F2:3设计全基因组多标记... 数量性状的遗传率低时,常采用F2:3设计进行遗传分析,但往往忽略异质家系内QTL的混合分布特性。同时,用多QTL模型检测QTL会提高QTL检测的功效。因此,本文在利用F2:3设计异质F2:3家系内QTL混合分布特性基础上,提出F2:3设计全基因组多标记联合分析新方法。该方法充分利用了异质F2:3家系内的QTL混合分布,并采用多QTL遗传模型。Monte Carlo模拟研究表明,新方法能获得精确的QTL效应和位置的估计。此外,还比较了QTL效应抽样的两种策略。研究表明,新策略能显著提高QTL检测的功效。 展开更多
关键词 贝叶斯压缩估计 数量性状基因座 多标记 R2:3 设计
在线阅读 下载PDF
uTPI-Comb: an optimal Bayesian dose-allocation method in two-agent phase Ⅰ/Ⅱ clinical trials
8
作者 Hao Liang Yaning Yang Min Yuan 《中国科学技术大学学报》 CSCD 北大核心 2024年第12期39-49,I0006,I0009,共13页
Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primari... Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primarily focuses on identifying the maximum tolerated dose(MTD),therapies involving targeted and immune agents facilitate the identifica-tion of an optimal biological dose combination(OBDC)by simultaneously evaluating both toxicity and efficacy.Cur-rently,most approaches to determining the OBDC in the literature are model-based and require complex model fittings,making them cumbersome and challenging to implement.To address these challenges,we developed a novel model-as-sisted approach called uTPI-Comb.This approach refines the established utility-based toxicity probability interval design by integrating a strategically devised zone-based local and global candidate set searching strategy,which can effectively optimize the decision-making process for two-agent dose escalation or de-escalation in drug combination trials.Extensive simulation studies demonstrate that the uTPI-Comb design speeds up the dose-searching process and provides substantial improvements over existing model-based methods in determining the optimal biological dose combinations. 展开更多
关键词 bayesian adaptive design optimal biological dose combination utility-based toxicity probability interval design zone-based candidate sets
暂未订购
Reinforcement Learning of Molecule Optimization with Bayesian Neural Networks
9
作者 Wei Hu 《Computational Molecular Bioscience》 2021年第4期69-83,共15页
Creating new molecules with desired properties is a fundamental and challenging problem in chemistry. Reinforcement learning (RL) has shown its utility in this area where the target chemical property values can serve ... Creating new molecules with desired properties is a fundamental and challenging problem in chemistry. Reinforcement learning (RL) has shown its utility in this area where the target chemical property values can serve as a reward signal. At each step of making a new molecule, the RL agent learns selecting an action from a list of many chemically valid actions for a given molecule, implying a great uncertainty associated with its learning. In a traditional implementation of deep RL algorithms, deterministic neural networks are typically employed, thus allowing the agent to choose one action from one sampled action at each step. In this paper, we proposed a new strategy of applying Bayesian neural networks to RL to reduce uncertainty so that the agent can choose one action from a pool of sampled actions at each step, and investigated its benefits in molecule design. Our experiments suggested the Bayesian approach could create molecules of desirable chemical quality while maintained their diversity, a very difficult goal to achieve in machine learning of molecules. We further exploited their diversity by using them to train a generative model to yield more novel drug-like molecules, which were absent in the training molecules as we know novelty is essential for drug candidate molecules. In conclusion, Bayesian approach could offer a balance between exploitation and exploration in RL, and a balance between optimization and diversity in molecule design. 展开更多
关键词 Molecule design bayesian Neural Networks Reinforcement Learning
在线阅读 下载PDF
Exponential System Reliability Test Design Based on Information Fusion
10
作者 刘琦 张安扬 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期323-326,共4页
By analyzing the shortage of reliability test design and thinking over the producer's risk and consumer's risk, the information fusion technology is used to set up a reliability test design model( RTDM). By an... By analyzing the shortage of reliability test design and thinking over the producer's risk and consumer's risk, the information fusion technology is used to set up a reliability test design model( RTDM). By analyzing the demands and constraint conditions of the RTDM and with applications of Bayesian approach and Monte Carlo method( MCM),this paper puts forward the exponential distributed subsystems and the information fusion technology among them. According to the posteriori risk criteria,formulas of producer's risk and consumer's risk were also inferred,and with the help of Matlab software,selection of the optimum test plan was solved. Finally,validity of the model had been proved by a test of series parallel system. 展开更多
关键词 reliability test design information fusion reliability test design model(RTDM) bayesian approach Monte Carlo method(MCM)
在线阅读 下载PDF
Influence of parental sample sizes on the estimating genetic parameters in cultured clam Meretrix meretrix based on factorial mating designs
11
作者 LIANG Bingbing YUE Xin +1 位作者 WANG Hongxia LIU Baozhong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第6期42-49,共8页
The precise and accurate knowledge of genetic parameters is a prerequisite for making efficient selection strategies in breeding programs.A number of estimators of heritability about important economic traits in many ... The precise and accurate knowledge of genetic parameters is a prerequisite for making efficient selection strategies in breeding programs.A number of estimators of heritability about important economic traits in many marine mollusks are available in the literature,however very few research have evaluated about the accuracy of genetic parameters estimated with different family structures.Thus,in the present study,the effect of parent sample size for estimating the precision of genetic parameters of four growth traits in clam M.meretrix by factorial designs were analyzed through restricted maximum likelihood(REML) and Bayesian.The results showed that the average estimated heritabilities of growth traits obtained from REML were 0.23-0.32 for 9 and 16 full-sib families and 0.19-0.22 for 25 full-sib families.When using Bayesian inference,the average estimated heritabilities were0.11-0.12 for 9 and 16 full-sib families and 0.13-0.16 for 25 full-sib families.Compared with REML,Bayesian got lower heritabilities,but still remained at a medium level.When the number of parents increased from 6 to 10,the estimated heritabilities were more closed to 0.20 in REML and 0.12 in Bayesian inference.Genetic correlations among traits were positive and high and had no significant difference between different sizes of designs.The accuracies of estimated breeding values from the 9 and 16 families were less precise than those from 25 families.Our results provide a basic genetic evaluation for growth traits and should be useful for the design and operation of a practical selective breeding program in the clam M.meretrix. 展开更多
关键词 Meretrix meretrix parental sample sizes genetic parameter factorial design restricted maximum likelihood bayesian inference
在线阅读 下载PDF
针对疫苗研发的临床试验创新设计
12
作者 赵丹妮 黄卓英 +2 位作者 田婕 张涛 王伟炳 《复旦学报(医学版)》 北大核心 2025年第2期311-316,共6页
对于一些突发的重大新发传染病流行,仅依靠传统疫苗临床试验不能及时得到有意义的研究结果。为了更好地应对疾病的暴发,需要一些新的试验设计,不仅能够加速或重组传统疫苗临床试验的3个阶段,同时依然严格遵守与候选药物安全性和有效性... 对于一些突发的重大新发传染病流行,仅依靠传统疫苗临床试验不能及时得到有意义的研究结果。为了更好地应对疾病的暴发,需要一些新的试验设计,不仅能够加速或重组传统疫苗临床试验的3个阶段,同时依然严格遵守与候选药物安全性和有效性评价相关的科学规律。本文归纳了目前疫苗临床试验的创新设计类型和思路,以及应用过程中需注意的要点,为相关研究提供方法学参考。适应性设计灵活性高,可根据中期分析结果动态调整试验参数,例如剂量选择、人群分层和样本量重估。贝叶斯设计允许纳入历史数据和先验信息,减少样本量需求。主方案设计可以在一个总体方案中评估多种治疗方法或目标人群,提高效率。真实世界数据(real-world data,RWD)的应用可以从非干预性环境中获取数据(如电子健康记录、接种记录、保险索赔数据),支持虚拟对照组的设立从而解决伦理问题。本文还介绍了基于随机对照试验和RWD的混合设计。这些试验设计的创新都优化了试验流程,从而加速疫苗研发和审批,为实现传染病防控目标提供了更有力的循证证据。 展开更多
关键词 疫苗临床试验 适应性设计 贝叶斯设计 主方案设计 真实世界数据(RWD)
暂未订购
基于贝叶斯实验设计优化跨孔高密度电阻率法监测四维水文地质过程
13
作者 彭勃 强思远 施小清 《地质科技通报》 北大核心 2025年第5期293-301,共9页
地球物理方法可以有效监测四维水文地质过程中水流的动态和物质的传输,其成像精度往往与监测布置方案密切相关。以常用的高密度电阻率法(electrical resistivity tomography,简称ERT)为例,为了获得良好的成像精度往往需要大量的电极排列... 地球物理方法可以有效监测四维水文地质过程中水流的动态和物质的传输,其成像精度往往与监测布置方案密切相关。以常用的高密度电阻率法(electrical resistivity tomography,简称ERT)为例,为了获得良好的成像精度往往需要大量的电极排列,导致监测时间较长,因而不能实时响应四维水文地质动态过程。已有ERT监测方案优化研究多侧重地表ERT,很少针对跨孔ERT。由于跨孔ERT在研究区域高精度刻画方面更具优势,提出了采用贝叶斯实验设计优化跨孔ERT监测方案。通过室内静态/动态实验以及野外场地数据,对比优化电极排列与传统电极排列的监测时间与监测精度,验证了贝叶斯实验设计优化方案的有效性。室内实验结果表明:优化后监测方案能减少约75%的监测时间,而且优化方案反演结果能更精准地动态刻画电阻异常区域,显著改善传统方案监测四维水文地质过程的滞后性误差。野外场地实验验证表明:在保证监测精度的前提下优化方案可减少约95%的监测时间。基于贝叶斯实验设计优化跨孔ERT电极排列监测方案为四维水文地质过程的高效监测提供了技术支撑。 展开更多
关键词 跨孔高密度电阻率法 电极排列优化 地球物理 贝叶斯实验设计 四维水文地质监测
在线阅读 下载PDF
逆向教学设计法在“概率论与数理统计”课程中的探索与实践
14
作者 杨习清 赵有益 +3 位作者 史战红 牛雪娜 张定海 周生伟 《常州工学院学报》 2025年第3期101-104,共4页
“概率论与数理统计”是各类高等院校学生的公共基础课程,它能够培养学生运用统计建模思想解决实际问题的能力。然而,目前国内这门课程的教学大多沿用传统教学设计,教学内容从固定教材出发,教学方式以教师讲授为主,课程考核形式比较单... “概率论与数理统计”是各类高等院校学生的公共基础课程,它能够培养学生运用统计建模思想解决实际问题的能力。然而,目前国内这门课程的教学大多沿用传统教学设计,教学内容从固定教材出发,教学方式以教师讲授为主,课程考核形式比较单一。为此,在“概率论与数理统计”的教学设计中引入逆向教学设计法,并通过“全概率公式与贝叶斯公式”的逆向教学设计实例,详细制定教学设计中各阶段的教学任务,包括互动讨论、小组合作、随堂测验等环节。逆向教学设计的应用,不仅有利于激发学生的学习兴趣、提高学生的学习积极性和自主性,也能改善课程的教学效果。 展开更多
关键词 逆向教学设计 概率论与数理统计 全概率公式 贝叶斯公式
在线阅读 下载PDF
邻避风险披露机制的网络沟通与劝说模型:私人信息源与信任驱动的学习 被引量:2
15
作者 余刘凯 《中国管理科学》 北大核心 2025年第3期162-173,共12页
“实在风险—感知风险”的邻避风险链管控成为阻断邻避效应外化为社会稳定风险的关键。本文基于实在风险信息的非对称性,聚焦邻避风险沟通场景下管理者的风险披露机制设计。考虑居民的私人风险信息源、行动的全局网络外部性以及信任驱... “实在风险—感知风险”的邻避风险链管控成为阻断邻避效应外化为社会稳定风险的关键。本文基于实在风险信息的非对称性,聚焦邻避风险沟通场景下管理者的风险披露机制设计。考虑居民的私人风险信息源、行动的全局网络外部性以及信任驱动的学习规则,刻画邻避事件中两类典型的沟通场景,即居民之间的策略性交互以及管理者对居民的劝说,旨在揭示居民感知风险的演变规律,并设计管理者最优公共风险披露机制。为此,本文基于网络Cheap talk理论与贝叶斯劝说理论,构建网络沟通与劝说理论模型。分析表明,管理者最优公共风险披露机制为确定性区间阈值推荐机制,其针对不同私人信息环境下的居民实施激励相容的差异化推荐,对越乐观的居民,机制推荐接受的风险区间越广。同时,私人信息源的负面强度与个数决定了管理者是否需要披露、如何披露以及披露的效果。此外,居民信任对基于该机制的劝说效果具有正向促进作用,然而,较悲观(高私人信息环境)居民的期望收益是信任的减函数,由此导致信任与社会总福利的非增关系。本文研究明确了管理者最优风险披露机制,并从私人信息源与信任两个维度为提升披露效果提供具体建议。 展开更多
关键词 邻避风险沟通 私人信息源 信任驱动的学习 非贝叶斯劝说 机制设计
原文传递
基于人工智能集成开发环境的寒地老年人环境健康风险智能评估系统
16
作者 张天衡 付瑶 +1 位作者 高建 薛焕然 《风景园林》 北大核心 2025年第7期123-131,共9页
【目的】构建基于贝叶斯概率框架的寒地老年人环境健康风险预测系统,评估不同户外环境暴露对老年人生理心理指标的影响,为老年健康管理及适老化环境设计提供科学决策支持。【方法】通过开展沈阳市某社区3种典型户外环境(活动区域、绿道... 【目的】构建基于贝叶斯概率框架的寒地老年人环境健康风险预测系统,评估不同户外环境暴露对老年人生理心理指标的影响,为老年健康管理及适老化环境设计提供科学决策支持。【方法】通过开展沈阳市某社区3种典型户外环境(活动区域、绿道区域、街道区域)的老年人健康指标采集试验,构建环境特征参数和个体敏感度参数框架;结合性别差异特征,建立基于贝叶斯概率框架的环境健康预测模型并进行交叉验证;利用AI-IDE平台,建立基于移动端的环境健康风险预测系统;基于预测系统的参数敏感性分析结果,提出寒地适老化户外环境的设计优化策略。【结果】1)老年女性环境敏感度显著高于男性;绿道环境对老年人健康效应最佳,表现为收缩压下降和积极情绪增加;2)预测模型具有良好的拟合优度和预测区间覆盖率;移动端预测系统实现了适老化界面设计和实时风险预警;3)确定了最优空间开敞度与绿化覆盖度范围,为环境设计提供了量化指标。【结论】基于贝叶斯概率框架构建的预测系统实现了寒地老年人环境健康风险的精准评估,采用个体差异参数化方法,结合多层级联预测框架的系统设计,显著提升了健康风险概率的预测精度。利用AI-IDE平台加速了从研究到应用的转化过程,为寒地适老化景观环境优化提供了量化指标和科学基础。 展开更多
关键词 老年人环境健康效应 适老化设计 贝叶斯概率框架 人工智能 个体特异性差异 寒地环境
在线阅读 下载PDF
基于贝叶斯支持向量机的多响应序贯自适应采样方法 被引量:1
17
作者 王彦琳 程志君 王子辰 《控制与决策》 北大核心 2025年第3期927-936,共10页
为了解决多响应建模中样本点选取问题,支撑高效准确地建立多个代理模型,提出一种基于贝叶斯支持向量机的修正多响应期望改进(MR-MEIGF)采样准则.首先,通过贝叶斯支持向量机模型计算候选点的梯度,构建邻域,得到基于邻域梯度投影的局部开... 为了解决多响应建模中样本点选取问题,支撑高效准确地建立多个代理模型,提出一种基于贝叶斯支持向量机的修正多响应期望改进(MR-MEIGF)采样准则.首先,通过贝叶斯支持向量机模型计算候选点的梯度,构建邻域,得到基于邻域梯度投影的局部开发准则;然后,将模型得到的样本点预测方差作为全局探索准则,将两者结合得到单个响应的混合采样准则;接着,通过局部指标量化每个响应的重要度,进一步得到兼顾多个响应模型精度的MR-MEIGF采样准则,从而实现多个响应的综合优化;最后,根据MR-MEIGF准则在候选池中选择新添加样本点,使用3个二维算例以及3个六维算例分别组合为多响应问题,与序贯空间填充方法、一次性空间填充方法以及其他多响应自适应采样方法进行对比,验证所提出采样方法的有效性,并在六维算例上将贝叶斯支持向量机模型与Kriging模型进行性能比较. 展开更多
关键词 代理模型 多响应 贝叶斯支持向量机 试验设计 采样准则 自适应
原文传递
Ⅰ/Ⅱ期新药研发中适应性无缝设计贝叶斯模型的类型及应用
18
作者 许颖俭 韩雪 +5 位作者 朱鑫伟 刘裕 顾菁 赖颖斯 帅雨杏 陈新林 《山东医药》 2025年第5期153-158,共6页
适应性无缝设计是一种将传统药物研发中独立的Ⅰ期临床试验(安全性/剂量探索)和Ⅱ期临床试验(有效性/剂量选择)整合到单一连续试验中的方法,其通过结合贝叶斯模型,可提升临床试验的效率与安全性。在适应性无缝设计中有多种贝叶斯模型,... 适应性无缝设计是一种将传统药物研发中独立的Ⅰ期临床试验(安全性/剂量探索)和Ⅱ期临床试验(有效性/剂量选择)整合到单一连续试验中的方法,其通过结合贝叶斯模型,可提升临床试验的效率与安全性。在适应性无缝设计中有多种贝叶斯模型,主要包括贝叶斯自适应决策模型、贝叶斯剂量-反应模型、边际概率模型和贝叶斯层次模型。随着贝叶斯模型在临床试验中的逐渐普及,其在适应性无缝设计中的应用也日益广泛,尤其适用于肿瘤免疫治疗、联合疗法和急性传染病大暴发等应急领域。 展开更多
关键词 贝叶斯模型 适应性无缝设计 新药研发 Ⅰ期临床试验 Ⅱ期临床试验
暂未订购
有限元模型修正中的贝叶斯深度神经网络构架优化设计 被引量:1
19
作者 何宇轩 尹涛 王曦 《振动与冲击》 北大核心 2025年第6期184-190,共7页
贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相... 贝叶斯神经网络(Bayesian neural network,BNN)相较于传统人工神经网络具有更强的噪声鲁棒性,在结构系统识别与健康监测领域逐渐受到关注,目前该领域的相关文献主要集中于单隐含层BNN的应用及其构架设计。具有一定深度的多隐含层构架相比于单隐含层在复杂高维数据拟合上通常具有更强的泛化能力,但针对多隐含层BNN构架优化设计问题的研究目前尚未见报道。该研究旨在针对多隐含层BNN并结合有限元模型修正问题开展构架优化设计研究,发展基于证据对数的多隐含层BNN网络性能定量量度,并提出一种实现多隐含层BNN各隐含层神经元数量同步优化的高效算法,获得针对具体模型修正问题的多隐含层BNN构架优化设计方案。通过基于现场实测模态参数的某大跨度钢结构人行桥模型修正验证了所提出方法的正确性和有效性。 展开更多
关键词 结构系统识别 结构健康监测 有限元模型修正 贝叶斯深度神经网络 构架优化设计
在线阅读 下载PDF
基于稀疏贝叶斯优化的翼型设计可解释性研究
20
作者 林健 吕宏强 +3 位作者 黄增辉 刘子敬 虞建 刘学军 《空气动力学学报》 北大核心 2025年第1期22-33,I0001,共13页
贝叶斯优化框架具有优化效率高、效果好等特点,适合解决高维黑盒优化问题,适用于飞机翼型设计领域。然而其优化过程不透明,难以直观理解机器优化结果和翼型典型物理特征之间的联系,如何解释贝叶斯优化进程仍然是一个挑战。针对这一问题... 贝叶斯优化框架具有优化效率高、效果好等特点,适合解决高维黑盒优化问题,适用于飞机翼型设计领域。然而其优化过程不透明,难以直观理解机器优化结果和翼型典型物理特征之间的联系,如何解释贝叶斯优化进程仍然是一个挑战。针对这一问题,本文提出了一种基于稀疏贝叶斯优化框架的翼型优化可解释性方法,使用具有物理意义的典型几何特征参与优化进程,在贝叶斯优化过程中对翼型特征进行稀疏,同时获得可解释性信息。在以RAE2822为基准翼型的超临界翼型优化算例上验证该方法。实验结果表明,该方法在优化气动性能的同时尽可能地减少了翼型设计维度,使其在保证气动性能良好的情况下具备了一定的可解释性,能直观地了解翼型各参数对优化目标的影响程度,辅助翼型设计人员进行决策和判断。 展开更多
关键词 贝叶斯优化 可解释性 翼型物理特征 翼型设计 维度稀疏
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部