期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
Quantifying uncertainty of mineral prediction using a novel Bayesian deep learning framework
1
作者 Yue Liu 《Artificial Intelligence in Geosciences》 2025年第2期348-360,共13页
Mineral resource exploration increasingly demands not only accurate prospectivity maps but also reliable measures of confidence to guide high-stakes decisions.In this study,a novel Bayesian deep learning(BDL)framework... Mineral resource exploration increasingly demands not only accurate prospectivity maps but also reliable measures of confidence to guide high-stakes decisions.In this study,a novel Bayesian deep learning(BDL)framework was introduced,which embeds probabilistic inference within a deep neural network to jointly predict mineralization potential and quantify uncertainty.Two posterior approximation strategies,Metropolis-Hastings(MH)sampling and variational inference(VI),are implemented to estimate model weights as distributions rather than as fixed values,enabling decomposition of predictive uncertainty into aleatoric and epistemic components.When applied to eleven ore-controlling features in the Nanling tungsten polymetallic region(China),both MH-based and VI-based BDL models demonstrate strong classification performance while revealing contrasting spatial patterns and uncertainty patterns.Correlation studies across probability bands confirm that MH sampling captures a broader spread of uncertainty at the cost of greater computational demand,while VI delivers greater efficiency but risks underestimating uncertainty.The results highlight trade-offs between accuracy,interpret-ability,and computational load,demonstrating that MH-based BDL offers more robust uncertainty assessments,whereas VI-based BDL places greater emphasis on efficiency.By providing spatially explicit probability and uncertainty maps,this framework advances risk-aware mineral exploration,enabling practitioners to target areas of high potential with low uncertainty and to identify regions warranting additional data acquisition. 展开更多
关键词 bayesian deep learning Mineral prediction Uncertainty quantification Posterior approximation
在线阅读 下载PDF
Reliability assessment of engine electronic controllers based on Bayesian deep learning and cloud computing 被引量:3
2
作者 Yujia WANG Rui KANG Ying CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期252-265,共14页
The reliability of an Engine Electronic Controller(EEC)attracts attention,which has a critical impact on aircraft engine safety.Reliability assessment is an important part of the design phase.However,the complex compo... The reliability of an Engine Electronic Controller(EEC)attracts attention,which has a critical impact on aircraft engine safety.Reliability assessment is an important part of the design phase.However,the complex composition of EEC and the characteristic of the Phased-Mission System(PMS)lead to the difficulty of assessment.This paper puts forward an advanced approach,considering the complex products and uncertain mission profiles to evaluate the Mean Time Between Failures(MTBF)in the design phase.The failure mechanisms of complex components are deduced by Bayesian Deep Learning(BDL)intelligent algorithm.And copious samples of reliability simulation are solved by cloud computing technology.Based on the result of BDL and cloud computing,simulations are conducted with the Physics of Failure(Po F)theory and Failure Behavior Model(FBM).This reliability assessment approach can evaluate MTBF of electronic products without reference to physical tests.Finally,an EEC is applied to verify the effectiveness and accuracy of the method. 展开更多
关键词 Engine electronic controllers Cloud computing bayesian deep learning UNCERTAINTY Reliability assessment
原文传递
Interpreting hourly mass concentrations of PM_(2.5)chemical components with an optimal deep-learning model
3
作者 Hongyi Li Ting Yang +2 位作者 Yiming Du Yining Tan Zifa Wang 《Journal of Environmental Sciences》 2025年第5期125-139,共15页
PM_(2.5)constitutes a complex and diversemixture that significantly impacts the environment,human health,and climate change.However,existing observation and numerical simulation techniques have limitations,such as a l... PM_(2.5)constitutes a complex and diversemixture that significantly impacts the environment,human health,and climate change.However,existing observation and numerical simulation techniques have limitations,such as a lack of data,high acquisition costs,andmultiple uncertainties.These limitations hinder the acquisition of comprehensive information on PM_(2.5)chemical composition and effectively implement refined air pollution protection and control strategies.In this study,we developed an optimal deep learning model to acquire hourly mass concentrations of key PM_(2.5)chemical components without complex chemical analysis.The model was trained using a randomly partitioned multivariate dataset arranged in chronological order,including atmospheric state indicators,which previous studies did not consider.Our results showed that the correlation coefficients of key chemical components were no less than 0.96,and the root mean square errors ranged from 0.20 to 2.11μg/m^(3)for the entire process(training and testing combined).The model accurately captured the temporal characteristics of key chemical components,outperforming typical machine-learning models,previous studies,and global reanalysis datasets(such asModern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2)and Copernicus Atmosphere Monitoring Service ReAnalysis(CAMSRA)).We also quantified the feature importance using the random forest model,which showed that PM_(2.5),PM_(1),visibility,and temperature were the most influential variables for key chemical components.In conclusion,this study presents a practical approach to accurately obtain chemical composition information that can contribute to filling missing data,improved air pollution monitoring and source identification.This approach has the potential to enhance air pollution control strategies and promote public health and environmental sustainability. 展开更多
关键词 Pm2.5 chemical composition Hourly mass concentration deep learning bayesian optimization Feature importance
原文传递
Bayesian Deep Learning Enabled Sentiment Analysis on Web Intelligence Applications
4
作者 Abeer D.Algarni 《Computers, Materials & Continua》 SCIE EI 2023年第5期3399-3412,共14页
In recent times,web intelligence(WI)has become a hot research topic,which utilizes Artificial Intelligence(AI)and advanced information technologies on theWeb and Internet.The users post reviews on social media and are... In recent times,web intelligence(WI)has become a hot research topic,which utilizes Artificial Intelligence(AI)and advanced information technologies on theWeb and Internet.The users post reviews on social media and are employed for sentiment analysis(SA),which acts as feedback to business people and government.Proper SA on the reviews helps to enhance the quality of the services and products,however,web intelligence techniques are needed to raise the company profit and user fulfillment.With this motivation,this article introduces a new modified pigeon inspired optimization based feature selection(MPIO-FS)with Bayesian deep learning(BDL),named MPIOBDL model for SA on WI applications.The presented MPIO-BDL model initially involved preprocessing and feature extraction take place using Term Frequency—Inverse Document Frequency(TF-IDF)technique to derive a useful set of information from the user reviews.Besides,the MPIO-FS model is applied for the selection of optimal feature subsets,which helps to enhance classification accuracy and reduce computation complexity.Moreover,the BDL model is employed to allocate the proper class labels of the applied user review data.A comprehensive experimental results analysis highlighted the improved classification efficiency of the presented model. 展开更多
关键词 Social media data classification bayesian deep learning artificial intelligence web intelligence feature selection
在线阅读 下载PDF
Application of Bayesian Analysis Based on Neural Network and Deep Learning in Data Visualization
5
作者 Jiying Yang Qi Long +1 位作者 Xiaoyun Zhu Yuan Yang 《Journal of Electronic Research and Application》 2024年第4期88-93,共6页
This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,tradit... This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science. 展开更多
关键词 Neural network deep learning bayesian analysis Data visualization Big data environment
在线阅读 下载PDF
Ensembles of Deep Learning Framework for Stomach Abnormalities Classification 被引量:2
6
作者 Talha Saeed Chu Kiong Loo Muhammad Shahreeza Safiruz Kassim 《Computers, Materials & Continua》 SCIE EI 2022年第3期4357-4372,共16页
Abnormalities of the gastrointestinal tract are widespread worldwide today.Generally,an effective way to diagnose these life-threatening diseases is based on endoscopy,which comprises a vast number of images.However,t... Abnormalities of the gastrointestinal tract are widespread worldwide today.Generally,an effective way to diagnose these life-threatening diseases is based on endoscopy,which comprises a vast number of images.However,the main challenge in this area is that the process is time-consuming and fatiguing for a gastroenterologist to examine every image in the set.Thus,this led to the rise of studies on designingAI-based systems to assist physicians in the diagnosis.In several medical imaging tasks,deep learning methods,especially convolutional neural networks(CNNs),have contributed to the stateof-the-art outcomes,where the complicated nonlinear relation between target classes and data can be learned and not limit to hand-crafted features.On the other hand,hyperparameters are commonly set manually,which may take a long time and leave the risk of non-optimal hyperparameters for classification.An effective tool for tuning optimal hyperparameters of deep CNNis Bayesian optimization.However,due to the complexity of the CNN,the network can be regarded as a black-box model where the information stored within it is hard to interpret.Hence,Explainable Artificial Intelligence(XAI)techniques are applied to overcome this issue by interpreting the decisions of the CNNs in such wise the physicians can trust.To play an essential role in real-time medical diagnosis,CNN-based models need to be accurate and interpretable,while the uncertainty must be handled.Therefore,a novel method comprising of three phases is proposed to classify these life-threatening diseases.At first,hyperparameter tuning is performed using Bayesian optimization for two state-of-the-art deep CNNs,and then Darknet53 and InceptionV3 features are extracted from these fine-tunned models.Secondly,XAI techniques are used to interpret which part of the images CNN takes for feature extraction.At last,the features are fused,and uncertainties are handled by selecting entropybased features.The experimental results show that the proposed method outperforms existing methods by achieving an accuracy of 97%based on a Bayesian optimized Support Vector Machine classifier. 展开更多
关键词 Gastrointestinal tract deep learning bayesian optimization hyperparameters explainable AI uncertainty handling feature fusion
在线阅读 下载PDF
Time Series Forecasting with Multiple Deep Learners: Selection from a Bayesian Network
7
作者 Shusuke Kobayashi Susumu Shirayama 《Journal of Data Analysis and Information Processing》 2017年第3期115-130,共16页
Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method... Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method of time-series prediction employing multiple deep learners combined with a Bayesian network where training data is divided into clusters using K-means clustering. We decided how many clusters are the best for K-means with the Bayesian information criteria. Depending on each cluster, the multiple deep learners are trained. We used three types of deep learners: deep neural network (DNN), recurrent neural network (RNN), and long short-term memory (LSTM). A naive Bayes classifier is used to determine which deep learner is in charge of predicting a particular time-series. Our proposed method will be applied to a set of financial time-series data, the Nikkei Average Stock price, to assess the accuracy of the predictions made. Compared with the conventional method of employing a single deep learner to acquire all the data, it is demonstrated by our proposed method that F-value and accuracy are improved. 展开更多
关键词 Time-Series Data deep learning bayesian NETWORK RECURRENT Neural NETWORK Long Short-Term Memory Ensemble learning K-Means
在线阅读 下载PDF
Optimized Predictive Framework for Healthcare Through Deep Learning
8
作者 Yasir Shahzad Huma Javed +3 位作者 Haleem Farman Jamil Ahmad Bilal Jan Abdelmohsen A.Nassani 《Computers, Materials & Continua》 SCIE EI 2021年第5期2463-2480,共18页
Smart healthcare integrates an advanced wave of information technology using smart devices to collect health-related medical science data.Such data usually exist in unstructured,noisy,incomplete,and heterogeneous form... Smart healthcare integrates an advanced wave of information technology using smart devices to collect health-related medical science data.Such data usually exist in unstructured,noisy,incomplete,and heterogeneous forms.Annotating these limitations remains an open challenge in deep learning to classify health conditions.In this paper,a long short-term memory(LSTM)based health condition prediction framework is proposed to rectify imbalanced and noisy data and transform it into a useful form to predict accurate health conditions.The imbalanced and scarce data is normalized through coding to gain consistency for accurate results using synthetic minority oversampling technique.The proposed model is optimized and ne-tuned in an end to end manner to select ideal parameters using tree parzen estimator to build a probabilistic model.The patient’s medication is pigeonholed to plot the diabetic condition’s risk factor through an algorithm to classify blood glucose metrics using a modern surveillance error grid method.The proposed model can efciently train,validate,and test noisy data by obtaining consistent results around 90%over the state of the art machine and deep learning techniques and overcoming the insufciency in training data through transfer learning.The overall results of the proposed model are further tested with secondary datasets to verify model sustainability. 展开更多
关键词 Recurrent neural network long short-term memory deep learning bayesian optimization surveillance error grid hyperparameter
在线阅读 下载PDF
Modeling of moral decisions with deep learning
9
作者 Christopher Wiedeman Ge Wang Uwe Kruger 《Visual Computing for Industry,Biomedicine,and Art》 2020年第1期307-320,共14页
One example of an artificial intelligence ethical dilemma is the autonomous vehicle situation presented by Massachusetts Institute of Technology researchers in the Moral Machine Experiment.To solve such dilemmas,the M... One example of an artificial intelligence ethical dilemma is the autonomous vehicle situation presented by Massachusetts Institute of Technology researchers in the Moral Machine Experiment.To solve such dilemmas,the MIT researchers used a classic statistical method known as the hierarchical Bayesian(HB)model.This paper builds upon previous work for modeling moral decision making,applies a deep learning method to learn human ethics in this context,and compares it to the HB approach.These methods were tested to predict moral decisions of simulated populations of Moral Machine participants.Overall,test results indicate that deep neural networks can be effective in learning the group morality of a population through observation,and outperform the Bayesian model in the cases of model mismatches. 展开更多
关键词 Artificial intelligence deep learning bayesian method Moral machine experiment
在线阅读 下载PDF
Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning
10
作者 Fadwa Alrowais Radwa Marzouk +1 位作者 Fahd N.Al-Wesabi Anwer Mustafa Hilal 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3325-3342,共18页
Sign language recognition can be treated as one of the efficient solu-tions for disabled people to communicate with others.It helps them to convey the required data by the use of sign language with no issues.The lates... Sign language recognition can be treated as one of the efficient solu-tions for disabled people to communicate with others.It helps them to convey the required data by the use of sign language with no issues.The latest develop-ments in computer vision and image processing techniques can be accurately uti-lized for the sign recognition process by disabled people.American Sign Language(ASL)detection was challenging because of the enhancing intraclass similarity and higher complexity.This article develops a new Bayesian Optimiza-tion with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication(BODL-HGRSLC)for Disabled People.The BODL-HGRSLC technique aims to recognize the hand gestures for disabled people’s communica-tion.The presented BODL-HGRSLC technique integrates the concepts of compu-ter vision(CV)and DL models.In the presented BODL-HGRSLC technique,a deep convolutional neural network-based residual network(ResNet)model is applied for feature extraction.Besides,the presented BODL-HGRSLC model uses Bayesian optimization for the hyperparameter tuning process.At last,a bidir-ectional gated recurrent unit(BiGRU)model is exploited for the HGR procedure.A wide range of experiments was conducted to demonstrate the enhanced perfor-mance of the presented BODL-HGRSLC model.The comprehensive comparison study reported the improvements of the BODL-HGRSLC model over other DL models with maximum accuracy of 99.75%. 展开更多
关键词 deep learning hand gesture recognition disabled people computer vision bayesian optimization
在线阅读 下载PDF
Enhancing Fire Detection with YOLO Models:A Bayesian Hyperparameter Tuning Approach
11
作者 Van-Ha Hoang Jong Weon Lee Chun-Su Park 《Computers, Materials & Continua》 2025年第6期4097-4116,共20页
Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,ha... Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,have enabled automated fire detection in images and videos.Several deep learning models have been developed for object detection,including applications in fire and smoke detection.This study focuses on optimizing the training hyperparameters of YOLOv8 andYOLOv10models usingBayesianTuning(BT).Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance.Specifically,the proposed approach improves the mean average precision at an Intersection over Union(IoU)threshold of 0.5(mAP50)of the YOLOv8s,YOLOv10s,YOLOv8l,and YOLOv10lmodels by 0.26,0.21,0.84,and 0.63,respectively,compared tomodels trainedwith the default hyperparameters.The performance gains are more pronounced in larger models,YOLOv8l and YOLOv10l,than in their smaller counterparts,YOLOv8s and YOLOv10s.Furthermore,YOLOv8 models consistently outperform YOLOv10,with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l when trained with BT.These results establish YOLOv8 as the preferred model for fire detection applications where detection performance is prioritized. 展开更多
关键词 Fire detection smoke detection deep learning YOLO bayesian hyperparameter tuning hyperparameter optimization Optuna
在线阅读 下载PDF
Automated Brain Tumor Classification from Magnetic Resonance Images Using Fine-Tuned Efficient Net-B6 with Bayesian Optimization Approach
12
作者 Sarfaraz Abdul Sattar Natha Mohammad Siraj +2 位作者 Majid Altamimi Adamali Shah Maqsood Mahmud 《Computer Modeling in Engineering & Sciences》 2025年第12期4179-4201,共23页
A brain tumor is a disease in which abnormal cells form a tumor in the brain.They are rare and can take many forms,making them difficult to treat,and the survival rate of affected patients is low.Magnetic resonance im... A brain tumor is a disease in which abnormal cells form a tumor in the brain.They are rare and can take many forms,making them difficult to treat,and the survival rate of affected patients is low.Magnetic resonance imaging(MRI)is a crucial tool for diagnosing and localizing brain tumors.However,themanual interpretation of MRI images is tedious and prone to error.As artificial intelligence advances rapidly,DL techniques are increasingly used in medical imaging to accurately detect and diagnose brain tumors.In this study,we introduce a deep convolutional neural network(DCNN)framework for brain tumor classification that uses EfficientNet-B6 as the backbone architecture and adds additional layers.The model achieved an accuracy of 99.10%on the public Brain Tumor MRI datasets,and we performed an ablation study to determine the optimal batch size,optimizer,loss function,and learning rate to maximize the accuracy and robustness of the model,followed by K-Fold cross-validation and testing the model on an independent dataset,and tuning Hyperparameters with Bayesian Optimization to further enhance the performance.When comparing our model to other deep learning(DL)models such as VGG19,MobileNetv2,ResNet50,InceptionV3,and DenseNet201,aswell as variants of the EfficientNetmodel(B1–B7),the results showthat our proposedmodel outperforms all othermodels.Our investigational results demonstrate superiority in terms of precision,recall/sensitivity,accuracy,specificity,and F1-score.Such innovations can potentially enhance clinical decision-making and patient treatment in neurooncological settings. 展开更多
关键词 Brain tumor classification convolutional neural network magnetic resonance imaging deep learning bayesian optimization
在线阅读 下载PDF
Failure Rate Prediction of a Power Transformer:A Decomposition-Based Bayesian Deep Learning Method
13
作者 Weixin Zhang Changzheng Shao +5 位作者 Wei Huang Bo Hu Jiahao Yan Kaigui Xie Maosen Cao Zhengze Wei 《CSEE Journal of Power and Energy Systems》 2025年第4期1596-1609,共14页
Power transformers,as essential equipment for electricity transmission,may fail due to insulation degradation.Predicting the failure rate of power transformers precisely is beneficial to decision-making.Currently,unce... Power transformers,as essential equipment for electricity transmission,may fail due to insulation degradation.Predicting the failure rate of power transformers precisely is beneficial to decision-making.Currently,uncertainties of the prediction have not been deeply discussed.Besides,prediction accuracy is not high enough.This paper proposes a decomposition-based Bayesian deep learning(BDL)method to predict the failure rate of power transformers.Both the model uncertainty related to distribution of the model's weights and the inherent uncertainty associated with random noise can be captured by BDL.Uncertainties of prediction results are depicted with confidence intervals.Moreover,prediction accuracy is improved using variational mode decomposition(VMD).Numerical experiments have been carried out based on oil chromatographic data of power transformers from the Chongqing grid to validate effectiveness of the proposed method. 展开更多
关键词 bayesian deep learning dissolved gas analysis failure rate prediction long short-term memory variational mode decomposition
原文传递
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测 被引量:1
14
作者 邱冶 袁有明 伞冰冰 《湖南大学学报(自然科学版)》 北大核心 2025年第3期82-93,共12页
为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态... 为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测. 展开更多
关键词 低矮房屋 风荷载 深度学习 双向LSTM 改进经验模态分解 贝叶斯优化 时程预测
在线阅读 下载PDF
基于深度学习贝叶斯模型平均代理的油藏自动历史拟合研究
15
作者 张凯 陈旭 +3 位作者 刘丕养 张金鼎 张黎明 姚军 《钻采工艺》 北大核心 2025年第1期147-156,共10页
油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能... 油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能力方面存在局限性。基于空间特征构建的代理模型侧重于学习油藏渗流的空间特性,但忽视了时间维度;基于时空特征构建的模型虽然擅长捕捉时间序列特征,却在空间特征学习方面不足。为此,文章提出了一种基于深度学习的贝叶斯模型平均代理方法,利用贝叶斯模型平均方法对两种深度学习代理模型进行集成,结合二者优势,增强代理模型对油藏特征的多维度学习能力,从而提高预测精度。该方法进一步结合多重数据同化集合平滑器,应用于实际油藏历史拟合中。实验结果表明,基于深度学习贝叶斯模型平均代理的历史拟合方法能够在保证高效计算的同时,准确拟合油藏实际生产动态,为快速、精确的历史拟合提供了一种创新解决方案。 展开更多
关键词 深度学习 历史拟合 产量预测 贝叶斯模型平均方法 集成代理模型
在线阅读 下载PDF
基于迁移学习和贝叶斯优化的早期膝骨关节炎深度学习诊断系统的构建
16
作者 石林 梁清 +3 位作者 杨放 施泽文 庞清江 陈先军 《浙江医学》 2025年第22期2409-2415,2424,I0005,I0006,共10页
目的构建基于迁移学习和贝叶斯优化的早期膝关节骨关节炎(KOA)(KL分级0~2级)深度学习诊断系统,并通过内外部数据集验证模型的性能。方法收集骨关节炎倡议公开数据库2004—2015年4796例患者膝关节前后位、双膝站立负重X线片8205张,按70... 目的构建基于迁移学习和贝叶斯优化的早期膝关节骨关节炎(KOA)(KL分级0~2级)深度学习诊断系统,并通过内外部数据集验证模型的性能。方法收集骨关节炎倡议公开数据库2004—2015年4796例患者膝关节前后位、双膝站立负重X线片8205张,按70∶15∶15比例分为训练集5742张、内部验证集1229张和内部测试集1234张;回顾性收集2024年9至12月宁波市第二医院收治的123例膝关节疼痛患者站立位双膝关节X线片246张为外部验证集。比较预训练策略(RadImageNet、ImageNet、无预训练)与超参数方法(贝叶斯优化、默认配置)的交互效应;通过10折交叉验证评估模型的稳定性,结合Grad-CAM、t-SNE、校准曲线和决策曲线分析模型可靠性。通过外部验证集评估模型在真实临床场景中的性能。结果RadImageNet_贝叶斯(RadImageNet预训练迁移学习与贝叶斯优化组合模型)在内部测试集上达到85.05%的准确率(AUC=0.9507)。10折交叉验证显示性能稳定(AUC=0.9507±0.0233)。RadImageNet_贝叶斯在外部验证集的准确率为72.36%(AUC=0.9415),较内部测试集下降12.69%,符合不同临床环境验证的预期范围。结论本研究构建的深度学习诊断系统RadImageNet_贝叶斯在早期KOA诊断中表现出良好的临床适用性和跨域稳定性,但其对KL分级1级的识别困难反映了该阶段影像特征的临床本质,提示需结合临床症状进行综合诊断。 展开更多
关键词 膝关节骨关节炎 深度学习 迁移学习 贝叶斯优化 早期检测
在线阅读 下载PDF
基于贝叶斯参数学习优化的海上风电机组动态可靠性预测
17
作者 黄玲玲 王全德 +3 位作者 应飞祥 苗育植 符杨 刘璐洁 《太阳能学报》 北大核心 2025年第10期703-713,共11页
为提升风电机组可靠性预测的准确性,构建一种基于贝叶斯参数学习优化的动态可靠性预测模型。首先,提出融合单纯可靠性贝叶斯网络与卷积神经网络的状态信息数据处理方法,以解决“多元异质”状态信息的参数不确定性和提取状态数据特征的... 为提升风电机组可靠性预测的准确性,构建一种基于贝叶斯参数学习优化的动态可靠性预测模型。首先,提出融合单纯可靠性贝叶斯网络与卷积神经网络的状态信息数据处理方法,以解决“多元异质”状态信息的参数不确定性和提取状态数据特征的问题。其次,提出基于参数学习优化的贝叶斯改进方法处理参数不确定性,提高模型对未来可靠性水平的预测准确性。最终,构建的基于贝叶斯参数学习优化的动态可靠性预测模型能精确预测风电机组在一定时间尺度内的可靠性变化趋势。算例结果表明,与其他基准模型相比,所提的预测模型在预测风电机组可靠性变化趋势方面表现出更高的优越性,进一步验证其有效性。 展开更多
关键词 海上风电机组 预测 深度学习 可靠性 贝叶斯网
原文传递
基于贝叶斯优化的CNN-BiLSTM-Attention的煤体结构识别方法
18
作者 边会媛 姬嘉骏 +3 位作者 段朝伟 周军 李坤 马予梒 《煤田地质与勘探》 北大核心 2025年第11期34-43,共10页
【背景】含煤盆地在多期构造变形作用下形成原生煤与构造煤,孔裂隙发育情况、渗透性与力学性能的不同导致煤层含气性差异大,煤体结构评价对煤层气的勘探开发至关重要。【目的和方法】为提高煤体结构识别的准确性与智能化水平,构建了一... 【背景】含煤盆地在多期构造变形作用下形成原生煤与构造煤,孔裂隙发育情况、渗透性与力学性能的不同导致煤层含气性差异大,煤体结构评价对煤层气的勘探开发至关重要。【目的和方法】为提高煤体结构识别的准确性与智能化水平,构建了一种融合贝叶斯优化策略的CNN-BiLSTMAttention混合模型。该方法结合卷积神经网络(convolutional neural network,CNN)的局部特征提取、双向长短期记忆网络(bidirection long short-term memory,BiLSTM)的时序建模和注意力机制(Attention)的特征聚焦能力,实现了多尺度测井数据的高效融合与表征。同时,采用贝叶斯优化自动调参,增强模型稳定性与训练效率。以鄂尔多斯盆地山西组与本溪组煤层为研究对象,基于常规测井数据,经过标准化处理、异常值剔除及缺失值插补,结合岩心资料构建了原生煤、原生−碎裂煤及碎裂煤的数据集,并采用交叉熵损失函数对模型进行训练与评估。【结果和结论】CNN-BiLSTM-Attention混合模型的准确率为95.12%,优于单一模型BiLSTM和CNN,各类煤体结构的精确率与召回率均超过93%,混淆矩阵显示误差分布均匀。在X2井中应用,混合模型在不同煤体结构过渡段表现出更高的一致性与判别力,显著减少了原生–碎裂煤与碎裂煤的错判。模型对测井数据的噪声具有良好鲁棒性,为煤层气精细评价提供了稳定可靠的技术支撑。 展开更多
关键词 煤体结构 深度学习 CNN-BiLSTM-Attention 贝叶斯优化 测井数据
在线阅读 下载PDF
面向OTFS-ISAC系统的智能信道估计现状、挑战与展望
19
作者 廖勇 常星宇 苏畅 《移动通信》 2025年第1期91-100,共10页
OTFS和ISAC技术均是6G移动通信的关键候选技术,OTFS和ISAC的融合系统OTFS-ISAC是当前移动通信研究的前沿。信道估计是接收机的关键处理,对系统性能起着重要的作用。同时,人工智能技术日益成为重要的通信系统信号处理手段。为此,对OTFS-I... OTFS和ISAC技术均是6G移动通信的关键候选技术,OTFS和ISAC的融合系统OTFS-ISAC是当前移动通信研究的前沿。信道估计是接收机的关键处理,对系统性能起着重要的作用。同时,人工智能技术日益成为重要的通信系统信号处理手段。为此,对OTFS-ISAC系统的智能信道估计进行了综述。首先描述OTFS-ISAC的系统模型,包括调制、解调以及雷达和通信模型;其次,详细阐述了三种智能信道估计方法:基于贝叶斯学习的稀疏估计、基于具有自适应阈值的深度卷积残差网络的信道估计和基于迭代深度学习网络的信道估计,这些方法利用了人工智能技术为信道估计问题提供了新的解决途径;然后,探讨了OTFS-ISAC系统中信道估计面临的技术挑战,包括信道特性的复杂性、参数估计的不一致性与复杂性、资源分配和开销问题以及技术融合与兼容性问题;最后,展望了技术创新与突破、标准化与规范化、应用场景的拓展以及跨领域合作与融合的未来发展方向。 展开更多
关键词 OTFS ISAC 信道估计 人工智能 深度学习 贝叶斯学习 6G
在线阅读 下载PDF
智能教育领域的知识追踪模型综述
20
作者 赵娅 托晋宽 +1 位作者 单可欣 贾迪 《计算机系统应用》 2025年第6期1-11,共11页
知识追踪技术可以对学生题目作答序列等数据进行分析,从而准确预测学生的知识点掌握状况,以帮助教育管理者更精确地对学生进行教学干预,提升学生的学习效果.随着时间的推移,知识追踪技术已经成为实现智能教育目标的重要辅助手段,并在智... 知识追踪技术可以对学生题目作答序列等数据进行分析,从而准确预测学生的知识点掌握状况,以帮助教育管理者更精确地对学生进行教学干预,提升学生的学习效果.随着时间的推移,知识追踪技术已经成为实现智能教育目标的重要辅助手段,并在智能教育领域得到了广泛应用.本综述主要研究智能教育领域的知识追踪技术发展现状.首先,本综述对知识追踪技术进行了概念界定;随后,分析了两类智能教育领域的知识追踪模型及其存在的问题,同步总结了国内外研究者对这些问题的应对策略;接下来,探讨了智能教育领域知识追踪模型的实际应用场景;最后,明确指出了智能教育领域的知识追踪模型面临的各种挑战,并对其未来发展进行了展望. 展开更多
关键词 知识追踪 智能教育 深度学习 贝叶斯网络
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部