期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
Interpreting hourly mass concentrations of PM_(2.5)chemical components with an optimal deep-learning model
1
作者 Hongyi Li Ting Yang +2 位作者 Yiming Du Yining Tan Zifa Wang 《Journal of Environmental Sciences》 2025年第5期125-139,共15页
PM_(2.5)constitutes a complex and diversemixture that significantly impacts the environment,human health,and climate change.However,existing observation and numerical simulation techniques have limitations,such as a l... PM_(2.5)constitutes a complex and diversemixture that significantly impacts the environment,human health,and climate change.However,existing observation and numerical simulation techniques have limitations,such as a lack of data,high acquisition costs,andmultiple uncertainties.These limitations hinder the acquisition of comprehensive information on PM_(2.5)chemical composition and effectively implement refined air pollution protection and control strategies.In this study,we developed an optimal deep learning model to acquire hourly mass concentrations of key PM_(2.5)chemical components without complex chemical analysis.The model was trained using a randomly partitioned multivariate dataset arranged in chronological order,including atmospheric state indicators,which previous studies did not consider.Our results showed that the correlation coefficients of key chemical components were no less than 0.96,and the root mean square errors ranged from 0.20 to 2.11μg/m^(3)for the entire process(training and testing combined).The model accurately captured the temporal characteristics of key chemical components,outperforming typical machine-learning models,previous studies,and global reanalysis datasets(such asModern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2)and Copernicus Atmosphere Monitoring Service ReAnalysis(CAMSRA)).We also quantified the feature importance using the random forest model,which showed that PM_(2.5),PM_(1),visibility,and temperature were the most influential variables for key chemical components.In conclusion,this study presents a practical approach to accurately obtain chemical composition information that can contribute to filling missing data,improved air pollution monitoring and source identification.This approach has the potential to enhance air pollution control strategies and promote public health and environmental sustainability. 展开更多
关键词 Pm2.5 chemical composition Hourly mass concentration deep learning bayesian optimization Feature importance
原文传递
Application of Bayesian Analysis Based on Neural Network and Deep Learning in Data Visualization
2
作者 Jiying Yang Qi Long +1 位作者 Xiaoyun Zhu Yuan Yang 《Journal of Electronic Research and Application》 2024年第4期88-93,共6页
This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,tradit... This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science. 展开更多
关键词 Neural network deep learning bayesian analysis Data visualization Big data environment
在线阅读 下载PDF
Reliability assessment of engine electronic controllers based on Bayesian deep learning and cloud computing 被引量:3
3
作者 Yujia WANG Rui KANG Ying CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期252-265,共14页
The reliability of an Engine Electronic Controller(EEC)attracts attention,which has a critical impact on aircraft engine safety.Reliability assessment is an important part of the design phase.However,the complex compo... The reliability of an Engine Electronic Controller(EEC)attracts attention,which has a critical impact on aircraft engine safety.Reliability assessment is an important part of the design phase.However,the complex composition of EEC and the characteristic of the Phased-Mission System(PMS)lead to the difficulty of assessment.This paper puts forward an advanced approach,considering the complex products and uncertain mission profiles to evaluate the Mean Time Between Failures(MTBF)in the design phase.The failure mechanisms of complex components are deduced by Bayesian Deep Learning(BDL)intelligent algorithm.And copious samples of reliability simulation are solved by cloud computing technology.Based on the result of BDL and cloud computing,simulations are conducted with the Physics of Failure(Po F)theory and Failure Behavior Model(FBM).This reliability assessment approach can evaluate MTBF of electronic products without reference to physical tests.Finally,an EEC is applied to verify the effectiveness and accuracy of the method. 展开更多
关键词 Engine electronic controllers Cloud computing bayesian deep learning UNCERTAINTY Reliability assessment
原文传递
Bayesian Deep Learning Enabled Sentiment Analysis on Web Intelligence Applications
4
作者 Abeer D.Algarni 《Computers, Materials & Continua》 SCIE EI 2023年第5期3399-3412,共14页
In recent times,web intelligence(WI)has become a hot research topic,which utilizes Artificial Intelligence(AI)and advanced information technologies on theWeb and Internet.The users post reviews on social media and are... In recent times,web intelligence(WI)has become a hot research topic,which utilizes Artificial Intelligence(AI)and advanced information technologies on theWeb and Internet.The users post reviews on social media and are employed for sentiment analysis(SA),which acts as feedback to business people and government.Proper SA on the reviews helps to enhance the quality of the services and products,however,web intelligence techniques are needed to raise the company profit and user fulfillment.With this motivation,this article introduces a new modified pigeon inspired optimization based feature selection(MPIO-FS)with Bayesian deep learning(BDL),named MPIOBDL model for SA on WI applications.The presented MPIO-BDL model initially involved preprocessing and feature extraction take place using Term Frequency—Inverse Document Frequency(TF-IDF)technique to derive a useful set of information from the user reviews.Besides,the MPIO-FS model is applied for the selection of optimal feature subsets,which helps to enhance classification accuracy and reduce computation complexity.Moreover,the BDL model is employed to allocate the proper class labels of the applied user review data.A comprehensive experimental results analysis highlighted the improved classification efficiency of the presented model. 展开更多
关键词 Social media data classification bayesian deep learning artificial intelligence web intelligence feature selection
在线阅读 下载PDF
Enhancing Fire Detection with YOLO Models:A Bayesian Hyperparameter Tuning Approach
5
作者 Van-Ha Hoang Jong Weon Lee Chun-Su Park 《Computers, Materials & Continua》 2025年第6期4097-4116,共20页
Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,ha... Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,have enabled automated fire detection in images and videos.Several deep learning models have been developed for object detection,including applications in fire and smoke detection.This study focuses on optimizing the training hyperparameters of YOLOv8 andYOLOv10models usingBayesianTuning(BT).Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance.Specifically,the proposed approach improves the mean average precision at an Intersection over Union(IoU)threshold of 0.5(mAP50)of the YOLOv8s,YOLOv10s,YOLOv8l,and YOLOv10lmodels by 0.26,0.21,0.84,and 0.63,respectively,compared tomodels trainedwith the default hyperparameters.The performance gains are more pronounced in larger models,YOLOv8l and YOLOv10l,than in their smaller counterparts,YOLOv8s and YOLOv10s.Furthermore,YOLOv8 models consistently outperform YOLOv10,with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l when trained with BT.These results establish YOLOv8 as the preferred model for fire detection applications where detection performance is prioritized. 展开更多
关键词 Fire detection smoke detection deep learning YOLO bayesian hyperparameter tuning hyperparameter optimization Optuna
在线阅读 下载PDF
Ensembles of Deep Learning Framework for Stomach Abnormalities Classification 被引量:2
6
作者 Talha Saeed Chu Kiong Loo Muhammad Shahreeza Safiruz Kassim 《Computers, Materials & Continua》 SCIE EI 2022年第3期4357-4372,共16页
Abnormalities of the gastrointestinal tract are widespread worldwide today.Generally,an effective way to diagnose these life-threatening diseases is based on endoscopy,which comprises a vast number of images.However,t... Abnormalities of the gastrointestinal tract are widespread worldwide today.Generally,an effective way to diagnose these life-threatening diseases is based on endoscopy,which comprises a vast number of images.However,the main challenge in this area is that the process is time-consuming and fatiguing for a gastroenterologist to examine every image in the set.Thus,this led to the rise of studies on designingAI-based systems to assist physicians in the diagnosis.In several medical imaging tasks,deep learning methods,especially convolutional neural networks(CNNs),have contributed to the stateof-the-art outcomes,where the complicated nonlinear relation between target classes and data can be learned and not limit to hand-crafted features.On the other hand,hyperparameters are commonly set manually,which may take a long time and leave the risk of non-optimal hyperparameters for classification.An effective tool for tuning optimal hyperparameters of deep CNNis Bayesian optimization.However,due to the complexity of the CNN,the network can be regarded as a black-box model where the information stored within it is hard to interpret.Hence,Explainable Artificial Intelligence(XAI)techniques are applied to overcome this issue by interpreting the decisions of the CNNs in such wise the physicians can trust.To play an essential role in real-time medical diagnosis,CNN-based models need to be accurate and interpretable,while the uncertainty must be handled.Therefore,a novel method comprising of three phases is proposed to classify these life-threatening diseases.At first,hyperparameter tuning is performed using Bayesian optimization for two state-of-the-art deep CNNs,and then Darknet53 and InceptionV3 features are extracted from these fine-tunned models.Secondly,XAI techniques are used to interpret which part of the images CNN takes for feature extraction.At last,the features are fused,and uncertainties are handled by selecting entropybased features.The experimental results show that the proposed method outperforms existing methods by achieving an accuracy of 97%based on a Bayesian optimized Support Vector Machine classifier. 展开更多
关键词 Gastrointestinal tract deep learning bayesian optimization hyperparameters explainable AI uncertainty handling feature fusion
在线阅读 下载PDF
Failure Rate Prediction of a Power Transformer:A Decomposition-Based Bayesian Deep Learning Method
7
作者 Weixin Zhang Changzheng Shao +5 位作者 Wei Huang Bo Hu Jiahao Yan Kaigui Xie Maosen Cao Zhengze Wei 《CSEE Journal of Power and Energy Systems》 2025年第4期1596-1609,共14页
Power transformers,as essential equipment for electricity transmission,may fail due to insulation degradation.Predicting the failure rate of power transformers precisely is beneficial to decision-making.Currently,unce... Power transformers,as essential equipment for electricity transmission,may fail due to insulation degradation.Predicting the failure rate of power transformers precisely is beneficial to decision-making.Currently,uncertainties of the prediction have not been deeply discussed.Besides,prediction accuracy is not high enough.This paper proposes a decomposition-based Bayesian deep learning(BDL)method to predict the failure rate of power transformers.Both the model uncertainty related to distribution of the model's weights and the inherent uncertainty associated with random noise can be captured by BDL.Uncertainties of prediction results are depicted with confidence intervals.Moreover,prediction accuracy is improved using variational mode decomposition(VMD).Numerical experiments have been carried out based on oil chromatographic data of power transformers from the Chongqing grid to validate effectiveness of the proposed method. 展开更多
关键词 bayesian deep learning dissolved gas analysis failure rate prediction long short-term memory variational mode decomposition
原文传递
Optimized Predictive Framework for Healthcare Through Deep Learning
8
作者 Yasir Shahzad Huma Javed +3 位作者 Haleem Farman Jamil Ahmad Bilal Jan Abdelmohsen A.Nassani 《Computers, Materials & Continua》 SCIE EI 2021年第5期2463-2480,共18页
Smart healthcare integrates an advanced wave of information technology using smart devices to collect health-related medical science data.Such data usually exist in unstructured,noisy,incomplete,and heterogeneous form... Smart healthcare integrates an advanced wave of information technology using smart devices to collect health-related medical science data.Such data usually exist in unstructured,noisy,incomplete,and heterogeneous forms.Annotating these limitations remains an open challenge in deep learning to classify health conditions.In this paper,a long short-term memory(LSTM)based health condition prediction framework is proposed to rectify imbalanced and noisy data and transform it into a useful form to predict accurate health conditions.The imbalanced and scarce data is normalized through coding to gain consistency for accurate results using synthetic minority oversampling technique.The proposed model is optimized and ne-tuned in an end to end manner to select ideal parameters using tree parzen estimator to build a probabilistic model.The patient’s medication is pigeonholed to plot the diabetic condition’s risk factor through an algorithm to classify blood glucose metrics using a modern surveillance error grid method.The proposed model can efciently train,validate,and test noisy data by obtaining consistent results around 90%over the state of the art machine and deep learning techniques and overcoming the insufciency in training data through transfer learning.The overall results of the proposed model are further tested with secondary datasets to verify model sustainability. 展开更多
关键词 Recurrent neural network long short-term memory deep learning bayesian optimization surveillance error grid hyperparameter
在线阅读 下载PDF
Time Series Forecasting with Multiple Deep Learners: Selection from a Bayesian Network
9
作者 Shusuke Kobayashi Susumu Shirayama 《Journal of Data Analysis and Information Processing》 2017年第3期115-130,共16页
Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method... Considering the recent developments in deep learning, it has become increasingly important to verify what methods are valid for the prediction of multivariate time-series data. In this study, we propose a novel method of time-series prediction employing multiple deep learners combined with a Bayesian network where training data is divided into clusters using K-means clustering. We decided how many clusters are the best for K-means with the Bayesian information criteria. Depending on each cluster, the multiple deep learners are trained. We used three types of deep learners: deep neural network (DNN), recurrent neural network (RNN), and long short-term memory (LSTM). A naive Bayes classifier is used to determine which deep learner is in charge of predicting a particular time-series. Our proposed method will be applied to a set of financial time-series data, the Nikkei Average Stock price, to assess the accuracy of the predictions made. Compared with the conventional method of employing a single deep learner to acquire all the data, it is demonstrated by our proposed method that F-value and accuracy are improved. 展开更多
关键词 Time-Series Data deep learning bayesian NETWORK RECURRENT Neural NETWORK Long Short-Term Memory Ensemble learning K-Means
在线阅读 下载PDF
Modeling of moral decisions with deep learning
10
作者 Christopher Wiedeman Ge Wang Uwe Kruger 《Visual Computing for Industry,Biomedicine,and Art》 2020年第1期307-320,共14页
One example of an artificial intelligence ethical dilemma is the autonomous vehicle situation presented by Massachusetts Institute of Technology researchers in the Moral Machine Experiment.To solve such dilemmas,the M... One example of an artificial intelligence ethical dilemma is the autonomous vehicle situation presented by Massachusetts Institute of Technology researchers in the Moral Machine Experiment.To solve such dilemmas,the MIT researchers used a classic statistical method known as the hierarchical Bayesian(HB)model.This paper builds upon previous work for modeling moral decision making,applies a deep learning method to learn human ethics in this context,and compares it to the HB approach.These methods were tested to predict moral decisions of simulated populations of Moral Machine participants.Overall,test results indicate that deep neural networks can be effective in learning the group morality of a population through observation,and outperform the Bayesian model in the cases of model mismatches. 展开更多
关键词 Artificial intelligence deep learning bayesian method Moral machine experiment
在线阅读 下载PDF
Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning
11
作者 Fadwa Alrowais Radwa Marzouk +1 位作者 Fahd N.Al-Wesabi Anwer Mustafa Hilal 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3325-3342,共18页
Sign language recognition can be treated as one of the efficient solu-tions for disabled people to communicate with others.It helps them to convey the required data by the use of sign language with no issues.The lates... Sign language recognition can be treated as one of the efficient solu-tions for disabled people to communicate with others.It helps them to convey the required data by the use of sign language with no issues.The latest develop-ments in computer vision and image processing techniques can be accurately uti-lized for the sign recognition process by disabled people.American Sign Language(ASL)detection was challenging because of the enhancing intraclass similarity and higher complexity.This article develops a new Bayesian Optimiza-tion with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication(BODL-HGRSLC)for Disabled People.The BODL-HGRSLC technique aims to recognize the hand gestures for disabled people’s communica-tion.The presented BODL-HGRSLC technique integrates the concepts of compu-ter vision(CV)and DL models.In the presented BODL-HGRSLC technique,a deep convolutional neural network-based residual network(ResNet)model is applied for feature extraction.Besides,the presented BODL-HGRSLC model uses Bayesian optimization for the hyperparameter tuning process.At last,a bidir-ectional gated recurrent unit(BiGRU)model is exploited for the HGR procedure.A wide range of experiments was conducted to demonstrate the enhanced perfor-mance of the presented BODL-HGRSLC model.The comprehensive comparison study reported the improvements of the BODL-HGRSLC model over other DL models with maximum accuracy of 99.75%. 展开更多
关键词 deep learning hand gesture recognition disabled people computer vision bayesian optimization
在线阅读 下载PDF
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测 被引量:1
12
作者 邱冶 袁有明 伞冰冰 《湖南大学学报(自然科学版)》 北大核心 2025年第3期82-93,共12页
为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态... 为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测. 展开更多
关键词 低矮房屋 风荷载 深度学习 双向LSTM 改进经验模态分解 贝叶斯优化 时程预测
在线阅读 下载PDF
基于深度学习贝叶斯模型平均代理的油藏自动历史拟合研究
13
作者 张凯 陈旭 +3 位作者 刘丕养 张金鼎 张黎明 姚军 《钻采工艺》 北大核心 2025年第1期147-156,共10页
油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能... 油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能力方面存在局限性。基于空间特征构建的代理模型侧重于学习油藏渗流的空间特性,但忽视了时间维度;基于时空特征构建的模型虽然擅长捕捉时间序列特征,却在空间特征学习方面不足。为此,文章提出了一种基于深度学习的贝叶斯模型平均代理方法,利用贝叶斯模型平均方法对两种深度学习代理模型进行集成,结合二者优势,增强代理模型对油藏特征的多维度学习能力,从而提高预测精度。该方法进一步结合多重数据同化集合平滑器,应用于实际油藏历史拟合中。实验结果表明,基于深度学习贝叶斯模型平均代理的历史拟合方法能够在保证高效计算的同时,准确拟合油藏实际生产动态,为快速、精确的历史拟合提供了一种创新解决方案。 展开更多
关键词 深度学习 历史拟合 产量预测 贝叶斯模型平均方法 集成代理模型
在线阅读 下载PDF
基于贝叶斯参数学习优化的海上风电机组动态可靠性预测
14
作者 黄玲玲 王全德 +3 位作者 应飞祥 苗育植 符杨 刘璐洁 《太阳能学报》 北大核心 2025年第10期703-713,共11页
为提升风电机组可靠性预测的准确性,构建一种基于贝叶斯参数学习优化的动态可靠性预测模型。首先,提出融合单纯可靠性贝叶斯网络与卷积神经网络的状态信息数据处理方法,以解决“多元异质”状态信息的参数不确定性和提取状态数据特征的... 为提升风电机组可靠性预测的准确性,构建一种基于贝叶斯参数学习优化的动态可靠性预测模型。首先,提出融合单纯可靠性贝叶斯网络与卷积神经网络的状态信息数据处理方法,以解决“多元异质”状态信息的参数不确定性和提取状态数据特征的问题。其次,提出基于参数学习优化的贝叶斯改进方法处理参数不确定性,提高模型对未来可靠性水平的预测准确性。最终,构建的基于贝叶斯参数学习优化的动态可靠性预测模型能精确预测风电机组在一定时间尺度内的可靠性变化趋势。算例结果表明,与其他基准模型相比,所提的预测模型在预测风电机组可靠性变化趋势方面表现出更高的优越性,进一步验证其有效性。 展开更多
关键词 海上风电机组 预测 深度学习 可靠性 贝叶斯网
原文传递
面向OTFS-ISAC系统的智能信道估计现状、挑战与展望
15
作者 廖勇 常星宇 苏畅 《移动通信》 2025年第1期91-100,共10页
OTFS和ISAC技术均是6G移动通信的关键候选技术,OTFS和ISAC的融合系统OTFS-ISAC是当前移动通信研究的前沿。信道估计是接收机的关键处理,对系统性能起着重要的作用。同时,人工智能技术日益成为重要的通信系统信号处理手段。为此,对OTFS-I... OTFS和ISAC技术均是6G移动通信的关键候选技术,OTFS和ISAC的融合系统OTFS-ISAC是当前移动通信研究的前沿。信道估计是接收机的关键处理,对系统性能起着重要的作用。同时,人工智能技术日益成为重要的通信系统信号处理手段。为此,对OTFS-ISAC系统的智能信道估计进行了综述。首先描述OTFS-ISAC的系统模型,包括调制、解调以及雷达和通信模型;其次,详细阐述了三种智能信道估计方法:基于贝叶斯学习的稀疏估计、基于具有自适应阈值的深度卷积残差网络的信道估计和基于迭代深度学习网络的信道估计,这些方法利用了人工智能技术为信道估计问题提供了新的解决途径;然后,探讨了OTFS-ISAC系统中信道估计面临的技术挑战,包括信道特性的复杂性、参数估计的不一致性与复杂性、资源分配和开销问题以及技术融合与兼容性问题;最后,展望了技术创新与突破、标准化与规范化、应用场景的拓展以及跨领域合作与融合的未来发展方向。 展开更多
关键词 OTFS ISAC 信道估计 人工智能 深度学习 贝叶斯学习 6G
在线阅读 下载PDF
智能教育领域的知识追踪模型综述
16
作者 赵娅 托晋宽 +1 位作者 单可欣 贾迪 《计算机系统应用》 2025年第6期1-11,共11页
知识追踪技术可以对学生题目作答序列等数据进行分析,从而准确预测学生的知识点掌握状况,以帮助教育管理者更精确地对学生进行教学干预,提升学生的学习效果.随着时间的推移,知识追踪技术已经成为实现智能教育目标的重要辅助手段,并在智... 知识追踪技术可以对学生题目作答序列等数据进行分析,从而准确预测学生的知识点掌握状况,以帮助教育管理者更精确地对学生进行教学干预,提升学生的学习效果.随着时间的推移,知识追踪技术已经成为实现智能教育目标的重要辅助手段,并在智能教育领域得到了广泛应用.本综述主要研究智能教育领域的知识追踪技术发展现状.首先,本综述对知识追踪技术进行了概念界定;随后,分析了两类智能教育领域的知识追踪模型及其存在的问题,同步总结了国内外研究者对这些问题的应对策略;接下来,探讨了智能教育领域知识追踪模型的实际应用场景;最后,明确指出了智能教育领域的知识追踪模型面临的各种挑战,并对其未来发展进行了展望. 展开更多
关键词 知识追踪 智能教育 深度学习 贝叶斯网络
在线阅读 下载PDF
基于贝叶斯深度学习的复杂结构爆炸载荷的快速估计 被引量:1
17
作者 潘美霖 彭卫文 +2 位作者 冷春江 邱玖禄 钟巍 《爆炸与冲击》 北大核心 2025年第8期144-156,共13页
对于复杂结构的爆炸载荷估计,传统数值模拟方法计算耗时长,而基于神经网络的快速估计仅能进行点估计,无法给出结果的置信度。为此,结合贝叶斯理论和深度学习,构建了复杂结构爆炸载荷快速估计的贝叶斯深度学习方法。通过开源数值模拟软件... 对于复杂结构的爆炸载荷估计,传统数值模拟方法计算耗时长,而基于神经网络的快速估计仅能进行点估计,无法给出结果的置信度。为此,结合贝叶斯理论和深度学习,构建了复杂结构爆炸载荷快速估计的贝叶斯深度学习方法。通过开源数值模拟软件,计算了爆炸当量、位置、速度等参数大范围变化下复杂结构的爆炸载荷数据,基于贝叶斯理论将深度学习模型参数视为随机变量,利用变分贝叶斯推断高效训练模型,在保证爆炸载荷快速估计精度的同时,赋予模型不确定性量化的能力。结果表明,该方法对训练数据以外的爆炸载荷快速估计的误差约为12.2%,置信区间涵盖真实值的百分比超过81.6%,单点爆炸载荷估计时间不超过20 ms。该方法是实现复杂结构爆炸载荷快速、可信估计的新方法。 展开更多
关键词 复杂结构 爆炸载荷 贝叶斯深度学习 不确定性量化
在线阅读 下载PDF
基于稀疏贝叶斯学习的深海近海面垂直阵列宽带声源定位
18
作者 李健 李赫 +1 位作者 郭新毅 马力 《声学学报》 北大核心 2025年第3期703-717,共15页
针对深海声影区宽带声源无源定位中传统多重谱方法存在的干涉结构不完整、深度分辨率不足以及波束形成栅瓣干扰等问题,提出了一种基于稀疏贝叶斯学习的高分辨定位方法。首先通过射线理论建立深海声影区模型,将接收信号的频率–角度干涉... 针对深海声影区宽带声源无源定位中传统多重谱方法存在的干涉结构不完整、深度分辨率不足以及波束形成栅瓣干扰等问题,提出了一种基于稀疏贝叶斯学习的高分辨定位方法。首先通过射线理论建立深海声影区模型,将接收信号的频率–角度干涉特征映射至深度–距离域;之后将稀疏贝叶斯学习引入声源定位过程,在抑制俯仰角栅瓣干扰的同时提升角度分辨力,保证干涉结构的完整性;并进一步将该方法拓展至声源深度估计问题,实现深度维的高分辨解算。海试结果表明,稀疏贝叶斯学习方法应用于深海宽带声源无源定位能有效实现多目标分辨定位。 展开更多
关键词 深海 声影区 宽带声源定位 频率干涉结构 稀疏贝叶斯学习
原文传递
基于贝叶斯优化的压水堆堆芯换料优化方法研究
19
作者 周原成 李云召 吴宏春 《核动力工程》 北大核心 2025年第2期202-208,共7页
压水堆堆芯换料优化是核电站安全高效经济运行的关键环节,属于有约束的非线性非凸整数组合优化问题。传统方法计算效率低,容易陷入局部最优解。本文提出了一种基于变分自动编码器、深度度量学习和贝叶斯优化的换料优化方法。该方法利用... 压水堆堆芯换料优化是核电站安全高效经济运行的关键环节,属于有约束的非线性非凸整数组合优化问题。传统方法计算效率低,容易陷入局部最优解。本文提出了一种基于变分自动编码器、深度度量学习和贝叶斯优化的换料优化方法。该方法利用变分自动编码器将离散的堆芯布置方案映射到连续的隐变量空间;再通过深度度量学习构建结构化的隐空间,使堆芯物理特性相近的样本在隐空间中距离也相近;然后利用多目标贝叶斯优化方法在隐空间中高效地搜索最优解,并通过解码器将最优隐变量解码成对应的堆芯布置方案。基于某M310堆芯首循环初装料数据进行的实验验证表明,该方法能够有效提高换料优化效率和求解质量,获得优于传统方法的布置方案。 展开更多
关键词 堆芯换料优化 贝叶斯优化 变分自动编码器 深度度量学习 NECP-Bamboo
原文传递
变分贝叶斯在线更新预测锅炉水冷壁温度
20
作者 李斌 胡煜 +2 位作者 卢成 蔡晋辉 曾九孙 《中国测试》 北大核心 2025年第9期191-200,共10页
水冷壁管道在锅炉运行过程中,由于温度过高而引起的爆管事故时有发生,因此,减少事故的发生,水冷壁管道温度变化的快速准确预测至关重要。针对过程的强时序相关性,该文构建以门控循环神经网络(GRU)、Informer、时序卷积神经网络(TCN)等... 水冷壁管道在锅炉运行过程中,由于温度过高而引起的爆管事故时有发生,因此,减少事故的发生,水冷壁管道温度变化的快速准确预测至关重要。针对过程的强时序相关性,该文构建以门控循环神经网络(GRU)、Informer、时序卷积神经网络(TCN)等深度学习方法为基础的预测模型;同时,为适应工况的强波动性,引入变分贝叶斯(VBLL)在线更新机制,通过固定模型其他层的参数、仅对模型输出层的参数进行实时更新。实验结果表明,在结合VBLL更新机制后各模型精确度均有明显提升。其中模型TCN在平稳工况下预测误差在5℃和3℃以内的准确率均达100%;GRU模型在5℃和3℃误差范围内的准确率分别由95.70%、77.61%提升至100.00%、99.80%。在波动工况中结合VBLL后,GRU和TCN模型5℃误差准确率分别由22.44%、30.18%提高至70.96%、62.55%。所提方法在提升预测精度的同时,显著提升模型鲁棒性,具备良好的适应性与计算效率。 展开更多
关键词 温度预测 变分贝叶斯 深度学习 在线更新
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部