期刊文献+
共找到190篇文章
< 1 2 10 >
每页显示 20 50 100
A Support Vector Machine Based on Bayesian Criterion
1
作者 于传强 郭晓松 +1 位作者 王宇 王振业 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第2期99-104,共6页
SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From th... SVM handles classification problem only considering samples themselves and the classification effect depends on the characteristics of the training samples but not the current information of classified problem.From the phenomena of data crossing in systems,this paper improves the classification effect of SVM by adding the prior probability item reflecting the classified problem information into the decision function,which fuses the Bayesian criterion into SVM.The detailed deducing process and realizing steps of the algorithm are put forward.It is verified through two instances.The results showthat the new algorithm has better effect than the traditional SVM algorithm,and its robustness and sensitivity are all improved. 展开更多
关键词 mathematical statistics support vector machine bayesian criterion CLASSIFICATION prior probability SAMPLE
在线阅读 下载PDF
Automatic Estimation of the Number of Soil Profile Layers Using Bayesian Information Criterion
2
作者 JarosLaw Kurek Michal Kruk +2 位作者 Piotr Bilski Simon Rabarijoely Bartosz Swiderski 《通讯和计算机(中英文版)》 2014年第7期565-572,共8页
关键词 贝叶斯信息准则 土壤剖面 估计 岩土工程师 面层 生命科学学院 自动化方法 配置文件
在线阅读 下载PDF
Slope reliability and back analysis of failure with geotechnical parameters estimated using Bayesian inference 被引量:10
3
作者 Luis-Fernando Contreras Edwin T.Brown 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第3期628-643,共16页
A Bayesian approach is proposed for the inference of the geotechnical parameters used in slope design.The methodology involves the construction of posterior probability distributions that combine prior information on ... A Bayesian approach is proposed for the inference of the geotechnical parameters used in slope design.The methodology involves the construction of posterior probability distributions that combine prior information on the parameter values with typical data from laboratory tests and site investigations used in design.The posterior distributions are often complex,multidimensional functions whose analysis requires the use of Markov chain Monte Carlo(MCMC)methods.These procedures are used to draw representative samples of the parameters investigated,providing information on their best estimate values,variability and correlations.The paper describes the methodology to define the posterior distributions of the input parameters for slope design and the use of these results for evaluation of the reliability of a slope with the first order reliability method(FORM).The reliability analysis corresponds to a forward stability analysis of the slope where the factor of safety(FS)is calculated with a surrogate model from the more likely values of the input parameters.The Bayesian model is also used to update the estimation of the input parameters based on the back analysis of slope failure.In this case,the condition FS?1 is treated as a data point that is compared with the model prediction of FS.The analysis requires a sufficient number of observations of failure to outbalance the effect of the initial input parameters.The parameters are updated according to their uncertainty,which is determined by the amount of data supporting them.The methodology is illustrated with an example of a rock slope characterised with a Hoek-Brown rock mass strength.The example is used to highlight the advantages of using Bayesian methods for the slope reliability analysis and to show the effects of data support on the results of the updating process from back analysis of failure. 展开更多
关键词 bayesian ANALYSIS HOEK-BROWN criterion SLOPE reliability Back ANALYSIS of FAILURE
在线阅读 下载PDF
Bayesian data analysis to quantify the uncertainty of intact rock strength 被引量:8
4
作者 Luis Fernando Contreras Edwin T.Brown Marc Ruest 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第1期11-31,共21页
One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insu... One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insufficient information on parameters or models. Probabilistic methods are normally used to quantify uncertainty. However, the frequentist approach commonly used for this purpose has some drawbacks.First, it lacks a formal framework for incorporating knowledge not represented by data. Second, it has limitations in providing a proper measure of the confidence of parameters inferred from data. The Bayesian approach offers a better framework for treating uncertainty in geotechnical design. The advantages of the Bayesian approach for uncertainty quantification are highlighted in this paper with the Bayesian regression analysis of laboratory test data to infer the intact rock strength parameters σand mused in the Hoek-Brown strength criterion. Two case examples are used to illustrate different aspects of the Bayesian methodology and to contrast the approach with a frequentist approach represented by the nonlinear least squares(NLLS) method. The paper discusses the use of a Student’s t-distribution versus a normal distribution to handle outliers, the consideration of absolute versus relative residuals, and the comparison of quality of fitting results based on standard errors and Bayes factors. Uncertainty quantification with confidence and prediction intervals of the frequentist approach is compared with that based on scatter plots and bands of fitted envelopes of the Bayesian approach. Finally, the Bayesian method is extended to consider two improvements of the fitting analysis. The first is the case in which the Hoek-Brown parameter, a, is treated as a variable to improve the fitting in the triaxial region. The second is the incorporation of the uncertainty in the estimation of the direct tensile strength from Brazilian test results within the overall evaluation of the intact rock strength. 展开更多
关键词 UNCERTAINTY Intact rock strength bayesian analysis Hoek-Brown criterion
在线阅读 下载PDF
Reliability-based design in rock engineering: Application of Bayesian regression methods to rock strength data 被引量:3
5
作者 Nezam Bozorgzadeh John P.Harrison 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第3期612-627,共16页
Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) str... Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) strength criterion within the RBD framework, and presents three distinct analyses using a Bayesian approach. Firstly, a compilation of intact compressive strength test data for six rock types is used to examine uncertainty and variability in the estimated H-B parameters m and σc, and corresponding predicted axial strength. The results suggest that within- and between-rock type variabilities are so large that these parameters need to be determined from rock testing campaigns, rather than reference values being used. The second analysis uses an extensive set of compressive and tensile (both direct and indirect) strength data for a granodiorite, together with a new Bayesian regression model, to develop joint probability distributions of m and σc suitable for use in RBD. This analysis also shows how compressive and indirect tensile strength data may be robustly used to fit an H-B criterion. The third analysis uses the granodiorite data to investigate the important matter of developing characteristic strength criteria. Using definitions from Eurocode 7, a formal Bayesian interpretation of characteristic strength is proposed and used to analyse strength data to generate a characteristic criterion. These criteria are presented in terms of characteristic parameters mk and σck, the values of which are shown to depend on the testing regime used to obtain the strength data. The paper confirms that careful use of appropriate Bayesian statistical analysis allows the H-B criterion to be brought within the framework of RBD. It also reveals that testing guidelines such as the International Society for Rock Mechanics and Rock Engineering (ISRM) suggested methods will require modification in order to support RBD. Importantly, the need to fully understand the implications of uncertainty in nonlinear strength criteria is identified. 展开更多
关键词 Reliability-based design(RBD) Hoek-Brown(HeB)criterion bayesian regression Indirect TENSILE STRENGTH Characteristic STRENGTH criterion
在线阅读 下载PDF
Spatial Modeling and Mapping of Tuberculosis Using Bayesian Hierarchical Approaches 被引量:1
6
作者 Abdul-Karim Iddrisu Yaw Ampem Amoako 《Open Journal of Statistics》 2016年第3期482-513,共32页
Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and poli... Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and policy making. However, data are subject to complexities by heterogeneity across host classes. The use of frequentist methods in biostatistics and epidemiology is common and is therefore extensively utilized in answering varied research questions. In this paper, we applied the hierarchical Bayesian approach to study the spatial distribution of tuberculosis in Kenya. The focus was to identify best fitting model for modeling TB relative risk in Kenya. The Markov Chain Monte Carlo (MCMC) method via WinBUGS and R packages was used for simulations. The Deviance Information Criterion (DIC) proposed by [1] was used for models comparison and selection. Among the models considered, unstructured heterogeneity model perfumes better in terms of modeling and mapping TB RR in Kenya. Variation in TB risk is observed among Kenya counties and clustering among counties with high TB Relative Risk (RR). HIV prevalence is identified as the dominant determinant of TB. We find clustering and heterogeneity of risk among high rate counties. Although the approaches are less than ideal, we hope that our formulations provide a useful stepping stone in the development of spatial methodology for the statistical analysis of risk from TB in Kenya. 展开更多
关键词 bayesian Hierarchical HETEROGENEITY Deviance Information criterion (DIC) Markov Chain Monte Carlo (MCMC) Host Classes Relative Risk
暂未订购
基于复值稀疏Bayesian的系统稳定性辨识
7
作者 谢伟翔 陈安琪 《韶关学院学报》 2024年第6期14-20,共7页
稀疏Bayesian学习是近年来机器学习研究的热点,基于Szeg?核的复值稀疏Bayesian学习算法能提供稀疏的有理逼近.提出基于Szeg?核的复值稀疏Bayesian学习算法来判定单位圆盘内闭环系统的稳定性,该方法具有可给出逼近的解析表达式和适用范... 稀疏Bayesian学习是近年来机器学习研究的热点,基于Szeg?核的复值稀疏Bayesian学习算法能提供稀疏的有理逼近.提出基于Szeg?核的复值稀疏Bayesian学习算法来判定单位圆盘内闭环系统的稳定性,该方法具有可给出逼近的解析表达式和适用范围更广的优点,并且不需要参数控制进行迭代优化,运算速度快.实验结果表明,此方法是有效的. 展开更多
关键词 稀疏bayesian 稳定系统 Szeg?核 稳定性判据
在线阅读 下载PDF
Investigating Spatio-Temporal Pattern of Relative Risk of Tuberculosis in Kenya Using Bayesian Hierarchical Approaches
8
作者 Abdul-Karim Iddrisu Abukari Alhassan Nafiu Amidu 《Journal of Tuberculosis Research》 2018年第2期175-197,共23页
Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes ... Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes and space-time epidemic processes. This paper seeks to suggest or propose Bayesian spatio-temporal model for modeling and mapping tuberculosis relative risks in space and time as well identify risks factors associated with the tuberculosis and counties in Kenya with high tuberculosis relative risks. In this paper, we used spatio-temporal Bayesian hierarchical models to study the pattern of tuberculosis relative risks in Kenya. The Markov Chain Monte Carlo method via WinBUGS and R packages were used for simulations and estimation of the parameter estimates. The best fitting model is selected using the Deviance Information Criterion proposed by Spiegelhalter and colleagues. Among the spatio-temporal models used, the Knorr-Held model with space-time interaction type III and IV fit the data well but type IV appears better than type III. Variation in tuberculosis risk is observed among Kenya counties and clustering among counties with high tuberculosis relative risks. The prevalence of HIV is identified as the determinant of TB. We found clustering and heterogeneity of TB risk among high rate counties and the overall tuberculosis risk is slightly decreasing from 2002-2009. We proposed that the Knorr-Held model with interaction type IV should be used to model and map Kenyan tuberculosis relative risks. Interaction of TB relative risk in space and time increases among rural counties that share boundaries with urban counties with high tuberculosis risk. This is due to the ability of models to borrow strength from neighboring counties, such that nearby counties have similar risk. Although the approaches are less than ideal, we hope that our study provide a useful stepping stone in the development of spatial and spatio-temporal methodology for the statistical analysis of risk from tuberculosis in Kenya. 展开更多
关键词 bayesian Hierarchical Deviance Information criterion Hot Classes HETEROGENEITY MARKOV Chain MONTE Carlo Relative Risk Spatial and SPATIO-TEMPORAL
暂未订购
融合OMP和PLS的粮食作物近红外光谱变量选择
9
作者 李四海 朱刚 +1 位作者 刘明奇 董雯 《中国粮油学报》 北大核心 2025年第1期220-224,共5页
为进一步解决正交匹配追踪算法用于近红外光谱定量分析时存在的偏差小、方差大、选择变量较多、模型容易过拟合的问题,提出了一种融合正交匹配追踪和偏最小二乘回归的正交匹配偏最小二乘变量选择方法OMPLS(Orthogonal matching pursuit ... 为进一步解决正交匹配追踪算法用于近红外光谱定量分析时存在的偏差小、方差大、选择变量较多、模型容易过拟合的问题,提出了一种融合正交匹配追踪和偏最小二乘回归的正交匹配偏最小二乘变量选择方法OMPLS(Orthogonal matching pursuit based partial least squares regression)。OMPLS为前向变量选择方法,算法根据OMP回归系数绝对值大小评价光谱变量重要性,使用偏最小二乘回归和贝叶斯信息准则确定剩余光谱变量中的重要变量,最终得到满足给定数量要求的最优变量集合。分别在corn数据集和wheat kernels数据集上进行变量选择实验,根据选择变量个数、RMSEC和RMSEP比较PLS、OMP、OMPLS 3种变量选择方法的性能。实验结果表明:OMPLS方法在corn数据集和Wheat kernels数据集上选择变量个数、RMSEP值均小于OMP方法,表明模型泛化能力有了一定程度的提高。OMPLS变量选择方法以BIC指标作为模型选择准则,在模型复杂度和预测能力之间取得平衡。与OMP方法相比,能够进一步减少选择变量的数量,防止过拟合,提高模型的预测能力和可解释性。 展开更多
关键词 近红外光谱 变量选择 正交匹配追踪 偏最小二乘 贝叶斯信息准则
在线阅读 下载PDF
基于改进两步组合算法的贝叶斯网络结构学习
10
作者 孟繁宜 孙毅 《东北师大学报(自然科学版)》 北大核心 2025年第4期36-42,共7页
基于合并规则提出了一种改进的两阶段组合算法(TS-E).该方法基于扩展的贝叶斯信息准则所构造的评分函数对网络结构进行评估,选择得分较高的贝叶斯网络结构,并通过实验进行数据分析,根据平均正确拟合率、错误发现率、结构汉明距离等指标... 基于合并规则提出了一种改进的两阶段组合算法(TS-E).该方法基于扩展的贝叶斯信息准则所构造的评分函数对网络结构进行评估,选择得分较高的贝叶斯网络结构,并通过实验进行数据分析,根据平均正确拟合率、错误发现率、结构汉明距离等指标对该算法的学习效果进行验证.研究表明,该方法提高了贝叶斯网络结构学习的准确度和拟合效果. 展开更多
关键词 贝叶斯网络 结构学习 扩展贝叶斯信息准则(EBIC) 有向无圈图(DAG)
在线阅读 下载PDF
AWGN信道中超窄带调制VMSK的最佳解调性能 被引量:9
11
作者 杨东凯 吴华森 张其善 《通信学报》 EI CSCD 北大核心 2008年第5期128-132,共5页
以甚小移键控(VMSK)为例,针对加性白高斯噪声(AWGN)信道中的解调性能进行研究,基于信号接收的分类器模型,从最基本的概率方法出发,利用最小错误率贝叶斯准则,得到最低误比特率的接收方式及其性能。并从相关检测一致性、最佳性能以及可... 以甚小移键控(VMSK)为例,针对加性白高斯噪声(AWGN)信道中的解调性能进行研究,基于信号接收的分类器模型,从最基本的概率方法出发,利用最小错误率贝叶斯准则,得到最低误比特率的接收方式及其性能。并从相关检测一致性、最佳性能以及可推广性的角度进行了详细阐述。分析结果表明,VMSK调制方式中表示1和0的信号波形中相同部分的能量并不能提高误码率性能。若要获得相同的误码性能,VMSK需要比BPSK更高的信噪比。此结论可以推广到其他UNB调制。 展开更多
关键词 无线通信 超窄带 贝叶斯准则 甚小移键控 最佳接收机
在线阅读 下载PDF
统计假设检验方法在全极化SAR变化检测中的应用 被引量:10
12
作者 郝洪美 张永红 +1 位作者 石海燕 黄金波 《遥感学报》 EI CSCD 北大核心 2012年第3期520-532,共13页
本文以全极化SAR数据为研究对象。由于全极化数据相干矩阵T3或协方差矩阵C3服从复wishart分布,所以首先在此分布的基础上利用统计假设检验方法构建似然比参数,用以表征地表地物的变化程度,然后利用基于广义高斯分布模型的EM迭代算法(GGM... 本文以全极化SAR数据为研究对象。由于全极化数据相干矩阵T3或协方差矩阵C3服从复wishart分布,所以首先在此分布的基础上利用统计假设检验方法构建似然比参数,用以表征地表地物的变化程度,然后利用基于广义高斯分布模型的EM迭代算法(GGM-EM)对变化信息进行初提取,最后充分考虑上下文信息,利用概率松弛迭代算法对初检测信息进行优化。该方法不仅全自动提取变化信息,而且经过非相干平均、初始分类、分类结果优化3次降斑去噪处理,因此检测精度较高。通过与传统对数比值法的比较,证明该方法的有效性。 展开更多
关键词 全极化SAR 变化检测 似然比 最小错误率贝叶斯准则 概率松弛迭代算法
原文传递
AIC与BIC在亲体-补充量模型选择中的应用及比较 被引量:12
13
作者 王艳君 刘群 任一平 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期397-403,共7页
由于渔业资源评估中补充量的剧烈变动、亲体量的测量误差以及时间序列的偏差常常使亲体 补充量(SR)关系模型的确定存在很大偏差问题。本文以7种SR(Stock Recruitment)模型的模拟数据作为观测数据,研究了AIC(AkaikeInfor mationCriterion... 由于渔业资源评估中补充量的剧烈变动、亲体量的测量误差以及时间序列的偏差常常使亲体 补充量(SR)关系模型的确定存在很大偏差问题。本文以7种SR(Stock Recruitment)模型的模拟数据作为观测数据,研究了AIC(AkaikeInfor mationCriterion)与BIC(BayesianInformationCriterion)在SR模型选择中的应用。作为例证,文中采用AIC和BIC对8组实际的SR数据进行了SR模型的选择,并对其结果进行了比较。参数的估计方法为最大似然法(Maximumlikelihoodmethod)。结果表明,AIC和BIC在SR模型选择中是有效的。但是,对于嵌套模型,BIC可能比AIC更有效。 展开更多
关键词 亲体-补充量模型 最大似然法 AIC(Akaike INFORMATION criterion) BIC(bayesian INFORMATION criterion)
在线阅读 下载PDF
充电模态下电动汽车动力电池模型辨识 被引量:18
14
作者 刘伟龙 王丽芳 +1 位作者 廖承林 王立业 《电工技术学报》 EI CSCD 北大核心 2017年第11期198-207,共10页
电池模型及参数辨识是电动汽车动力电池进行充、放电优化控制的基础,同时模型参数受充、放电工况的影响。为对充电模态下的电动汽车动力电池进行建模与参数辨识,对动力电池建模方法、模型参数辨识算法展开研究,建立基于电极阻抗谱理论... 电池模型及参数辨识是电动汽车动力电池进行充、放电优化控制的基础,同时模型参数受充、放电工况的影响。为对充电模态下的电动汽车动力电池进行建模与参数辨识,对动力电池建模方法、模型参数辨识算法展开研究,建立基于电极阻抗谱理论的可变阶次电池等效电路模型,提出基于遗忘因子扩展递推最小二乘算法(FFRELS)的模型参数辨识算法,构建基于贝叶斯信息准则(BIC)的电池模型最优阶次选择算法,创建基于晶格气体模型(LGM)的电池开路电压模型,对电池模型参数辨识算法进行修正,实现了充电模态下的电池模型参数辨识与最优阶次选择。仿真结果证明了该方法的有效性。 展开更多
关键词 电池模型 参数辨识 遗忘因子 贝叶斯信息准则 晶格气体模型
在线阅读 下载PDF
基于贝叶斯信息准则的极化干涉SAR图像非监督分类 被引量:8
15
作者 杨文 颜卫 +1 位作者 涂尚坦 廖明生 《电子与信息学报》 EI CSCD 北大核心 2012年第11期2628-2634,共7页
该文提出一种利用贝叶斯信息准则自动确定聚类类别数的极化干涉SAR非监督分类算法。该方法首先利用Shannon熵特征对极化干涉SAR图像进行初始分类,然后利用期望最大化(Expectation-Maximization,EM)算法和标号代价(LabelCost)优化算法对... 该文提出一种利用贝叶斯信息准则自动确定聚类类别数的极化干涉SAR非监督分类算法。该方法首先利用Shannon熵特征对极化干涉SAR图像进行初始分类,然后利用期望最大化(Expectation-Maximization,EM)算法和标号代价(LabelCost)优化算法对分类结果进行迭代优化,同时通过贝叶斯信息准则(Bayesian InformationCriterion,BIC)自动确定非监督分类的最佳类别数。实验结果表明该算法能够较准确地确定分类类别数,并具有较为满意的分类效果。 展开更多
关键词 合成孔径雷达 极化干涉 非监督分类 贝叶斯信息准则
在线阅读 下载PDF
贝叶斯信息标准在滑坡因子敏感性分析中的应用 被引量:24
16
作者 李雪平 唐辉明 《岩土力学》 EI CAS CSCD 北大核心 2006年第8期1393-1397,共5页
滑坡因子敏感性分析是滑坡预测和治理的重要前提。以巫山县新址西区作为试验区,运用滑坡影响因素与历史滑坡之间建立的Logistic回归模型,通过贝叶斯信息标准进行模型优劣程度的比较,以期得出本区滑坡因子的敏感程度。设计了逐个加入影... 滑坡因子敏感性分析是滑坡预测和治理的重要前提。以巫山县新址西区作为试验区,运用滑坡影响因素与历史滑坡之间建立的Logistic回归模型,通过贝叶斯信息标准进行模型优劣程度的比较,以期得出本区滑坡因子的敏感程度。设计了逐个加入影响因子进行非嵌套模型的优劣程度对比的试验方法。试验区滑坡因子敏感程度计算结果排队依次为:岩性、高程、距有影响构造线距离、坡度、坡向、坡形。试验为区域斜坡稳定性评价提供了一种新的、可靠的方法。 展开更多
关键词 贝叶斯信息标准 BIC 滑坡 因子 敏感性
在线阅读 下载PDF
基于线性加权数据融合的协作频谱感知优化 被引量:3
17
作者 刘全 高俊 +1 位作者 郭云玮 刘思洋 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第5期697-701,786,共6页
在认知无线电网络中,协作频谱感知技术可有效地缓解本地感知场景中存在的隐藏终端等问题。为了获得更大的协作增益,该文采用基于数据融合的协作频谱感知策略,融合中心依次收集各次用户上报的本地能量检测数据,然后进行线性加权融合,并... 在认知无线电网络中,协作频谱感知技术可有效地缓解本地感知场景中存在的隐藏终端等问题。为了获得更大的协作增益,该文采用基于数据融合的协作频谱感知策略,融合中心依次收集各次用户上报的本地能量检测数据,然后进行线性加权融合,并做出最终判决。重点研究了线性加权融合方案的优化,推导了各次用户分别在Neyman-Pearson(N-P)和Bayesian两种不同准则下的最优融合权重,并在Suzuki感知信道下进行了蒙特卡洛仿真和数值验证。结果表明,N-P准则下给出的两种优化加权融合方案MDC和NDC性能相近,且均比EGC、SC、MRC等常用的融合方案具有更高的协作检测概率;而Bayesian准则下推导的优化加权融合方案BAY在检测可靠性方面明显优于其他方案。 展开更多
关键词 bayesian准则 认知无线电 数据融合 能量检测 NEYMAN-PEARSON准则 频谱感知
在线阅读 下载PDF
基于BIC与SVRM的变压器油中气体预测模型 被引量:10
18
作者 郑元兵 陈伟根 +2 位作者 李剑 杜林 孙才新 《电力自动化设备》 EI CSCD 北大核心 2011年第9期46-49,共4页
基于v-支持向量回归机(v-SVRM)算法建立了变压器油中溶解气体变化预测模型,并引入贝叶斯证据框架对预测模型的参数进行了优化选取。同时,结合预测模型的预测正确率及预测模型的简洁度建立了预测模型的评价机制,并利用改进的贝叶斯信息标... 基于v-支持向量回归机(v-SVRM)算法建立了变压器油中溶解气体变化预测模型,并引入贝叶斯证据框架对预测模型的参数进行了优化选取。同时,结合预测模型的预测正确率及预测模型的简洁度建立了预测模型的评价机制,并利用改进的贝叶斯信息标准(BIC)作为最终的评价函数量化了评价机制。在实例中与灰色理论预测模型进行了比较,结果表明在同为小样本训练数据的情况下,v-SVRM预测模型比灰色模型有更高的预测准确率,且在所提出的评价机制里表现更好。 展开更多
关键词 支持向量机 支持向量回归机 故障检测 预测 电力变压器 贝叶斯信息标准 优化
在线阅读 下载PDF
盲信号分离中信号源数目估计方法研究 被引量:6
19
作者 徐小红 高隽 范之国 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期1-4,共4页
研究盲信号分离中信号源数目未知情况下信号源数目的估计问题。证明了无观测噪声时,利用观察信号数据矩阵的零空间估计法确定信号源数目的方法,等价于通过计算观察信号数据矩阵的秩来确定信号源数目;阐述了在信号源盲分离中有观测噪声时... 研究盲信号分离中信号源数目未知情况下信号源数目的估计问题。证明了无观测噪声时,利用观察信号数据矩阵的零空间估计法确定信号源数目的方法,等价于通过计算观察信号数据矩阵的秩来确定信号源数目;阐述了在信号源盲分离中有观测噪声时,国内外信号源数目估计的主要方法:特征值分解、Akaike信息准则(AIC)、最小描述长度(MDL)及Minka Bayesian准则,通过理论分析与实验结果对这些方法进行比较,得出各方法的适用范围以及影响估计的主要参数,为信号源数目的正确获取提供参考。 展开更多
关键词 盲信号分离 信号源数目 特征值分解 AIC准则 MDL准则 Minka bayesian准则
在线阅读 下载PDF
一种改进的BIC说话人改变检测算法 被引量:5
20
作者 杨继臣 贺前华 +2 位作者 潘伟锵 徐益君 李艳雄 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第9期47-51,共5页
针对贝叶斯信息准则(BIC)算法在说话人改变检测中计算量大、检测精度低的问题,文中提出了一种改进的BIC说话人改变检测算法.该算法通过限制分析窗内第一个数据窗的最大长度来降低计算量,并通过增加分析窗内第二个数据窗的有效长度(... 针对贝叶斯信息准则(BIC)算法在说话人改变检测中计算量大、检测精度低的问题,文中提出了一种改进的BIC说话人改变检测算法.该算法通过限制分析窗内第一个数据窗的最大长度来降低计算量,并通过增加分析窗内第二个数据窗的有效长度(提高可测度)来提高检测精度;同时,该算法只在新增区间内寻找潜在说话人改变点,从而解决了长时间无说话人改变时计算量不断增大的问题.实验结果表明,该算法和传统的BIC算法相比,偏移误差范围由0.10-0.80降低到0.03-0.20;当分析窗长为40s时,计算时间节省了约75%. 展开更多
关键词 说话人检测 改进贝叶斯信息准则 检测精度 可测度 数据窗
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部