Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and...Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian net- work of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly pro- portionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The inte- gration ofbigdata analytics and BN method offers a whole new perspective in manufacturing quality control.展开更多
The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthe...The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.展开更多
Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optim...Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.展开更多
The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approac...The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2.展开更多
Binary measurement systems that classify parts as either pass or fail are widely used. Inspectors or inspection systems are often subject to error. The error rates are unlikely to be identical across inspectors. We pr...Binary measurement systems that classify parts as either pass or fail are widely used. Inspectors or inspection systems are often subject to error. The error rates are unlikely to be identical across inspectors. We propose a random effects Bayesian approach to model the error probabilities and overall conforming rate. We also introduce a feature-subset selection procedure to determine the best inspector in terms of overall classification accuracy. We provide simulation studies that demonstrate the viability of our proposed estimation ranking and subset-selection methods and apply the methods to a real data set.展开更多
This paper proposes a novel Hamiltonian servo system, a combined modeling framework for control and estimation of a large team/fleet of autonomous robotic vehicles. The Hamiltonian servo framework represents high-dime...This paper proposes a novel Hamiltonian servo system, a combined modeling framework for control and estimation of a large team/fleet of autonomous robotic vehicles. The Hamiltonian servo framework represents high-dimensional, nonlinear and non-Gaussian generalization of the classical Kalman servo system. After defining the Kalman servo as a motivation, we define the affine Hamiltonian neural network for adaptive nonlinear control of a team of UGVs in continuous time. We then define a high-dimensional Bayesian particle filter for estimation of a team of UGVs in discrete time. Finally, we formulate a hybrid Hamiltonian servo system by combining the continuous-time control and the discrete-time estimation into a coherent framework that works like a predictor-corrector system.展开更多
基金Supported by 2015 Special Funds for Intelligent Manufacturing of China MIIT(Grant No.2015-415)National Natural Science Foundation of China(Grant No.71632008)
文摘Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian net- work of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly pro- portionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The inte- gration ofbigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
基金the National Science and Technology Major Project of China(No.2014ZX04014-011)
文摘The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability.
基金supported by the National Natural Science Foundation of China(51705221)the China Scholarship Council(201606830028)+1 种基金the Fundamental Research Funds for the Central Universities(NS2015072)the Funding of Jiangsu Innovation Program for Graduate Education(KYLX15 0313)
文摘Most of the maintenance optimization models in condition-based maintenance(CBM) consider the cost-optimal criterion, but few papers have dealt with availability maximization for maintenance applications. A novel optimal Bayesian control approach is presented for maintenance decision making. The system deterioration evolves as a three-state continuous time hidden semi-Markov process. Considering the optimal maintenance policy, the multivariate Bayesian control scheme based on the hidden semi-Markov model(HSMM) is developed, the objective is to maximize the long-run expected average availability per unit time. The proposed approach can optimize the sampling interval and control limit jointly. A case study using Markov chain Monte Carlo(MCMC)simulation is provided and a comparison with the Bayesian control scheme based on hidden Markov model(HMM), the age-based replacement policy, Hotelling’s T2, multivariate exponentially weihted moving average(MEWMA) and multivariate cumulative sum(MCUSUM) control charts is given, which illustrates the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (60874068)
文摘The command and control(C2) is a decision-making process based on human cognition,which contains operational,physical,and human characteristics,so it takes on uncertainty and complexity.As a decision support approach,Bayesian networks(BNs) provide a framework in which a decision is made by combining the experts' knowledge and the specific data.In addition,an expert system represented by human cognitive framework is adopted to express the real-time decision-making process of the decision maker.The combination of the Bayesian decision support and human cognitive framework in the C2 of a specific application field is modeled and executed by colored Petri nets(CPNs),and the consequences of execution manifest such combination can perfectly present the decision-making process in C2.
文摘Binary measurement systems that classify parts as either pass or fail are widely used. Inspectors or inspection systems are often subject to error. The error rates are unlikely to be identical across inspectors. We propose a random effects Bayesian approach to model the error probabilities and overall conforming rate. We also introduce a feature-subset selection procedure to determine the best inspector in terms of overall classification accuracy. We provide simulation studies that demonstrate the viability of our proposed estimation ranking and subset-selection methods and apply the methods to a real data set.
文摘This paper proposes a novel Hamiltonian servo system, a combined modeling framework for control and estimation of a large team/fleet of autonomous robotic vehicles. The Hamiltonian servo framework represents high-dimensional, nonlinear and non-Gaussian generalization of the classical Kalman servo system. After defining the Kalman servo as a motivation, we define the affine Hamiltonian neural network for adaptive nonlinear control of a team of UGVs in continuous time. We then define a high-dimensional Bayesian particle filter for estimation of a team of UGVs in discrete time. Finally, we formulate a hybrid Hamiltonian servo system by combining the continuous-time control and the discrete-time estimation into a coherent framework that works like a predictor-corrector system.