期刊文献+
共找到255篇文章
< 1 2 13 >
每页显示 20 50 100
Fault prediction method for nuclear power machinery based on Bayesian PPCA recurrent neural network model 被引量:8
1
作者 Jun Ling Gao-Jun Liu +2 位作者 Jia-Liang Li Xiao-Cheng Shen Dong-Dong You 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第8期13-23,共11页
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ... Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified. 展开更多
关键词 Fault prediction Nuclear power machinery Steam turbine Recurrent neural network Probabilistic principal component analysis bayesian confidence
在线阅读 下载PDF
A Back Propagation-Type Neural Network Architecture for Solving the Complete n ×n Nonlinear Algebraic System of Equations 被引量:1
2
作者 Konstantinos Goulianas Athanasios Margaris +2 位作者 Ioannis Refanidis Konstantinos Diamantaras Theofilos Papadimitriou 《Advances in Pure Mathematics》 2016年第6期455-480,共26页
The objective of this research is the presentation of a neural network capable of solving complete nonlinear algebraic systems of n equations with n unknowns. The proposed neural solver uses the classical back propaga... The objective of this research is the presentation of a neural network capable of solving complete nonlinear algebraic systems of n equations with n unknowns. The proposed neural solver uses the classical back propagation algorithm with the identity function as the output function, and supports the feature of the adaptive learning rate for the neurons of the second hidden layer. The paper presents the fundamental theory associated with this approach as well as a set of experimental results that evaluate the performance and accuracy of the proposed method against other methods found in the literature. 展开更多
关键词 Nonlinear Algebraic Systems neural networks Back propagation Numerical Analysis Computational methods
在线阅读 下载PDF
Fast 2D forward modeling of electromagnetic propagation well logs using finite element method and data-driven deep learning
3
作者 A.M.Petrov A.R.Leonenko +1 位作者 K.N.Danilovskiy O.V.Nechaev 《Artificial Intelligence in Geosciences》 2025年第1期85-96,共12页
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to... We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation. 展开更多
关键词 PETROPHYSICS Electromagnetic propagation logging Forward modeling Finite element method Residual neural networks
在线阅读 下载PDF
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
4
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 Artificial neural network Back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
在线阅读 下载PDF
Weld Geometry Monitoring for Metal Inert Gas Welding Process with Galvanized Steel Plates Using Bayesian Network 被引量:1
5
作者 MA Guohong LI Jian +1 位作者 HE Yinshui XIAO Wenbo 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第2期239-244,共6页
We present a novel method to monitor the weld geometry for metal inert gas(MIG)welding process with galvanized steel plates using Bayesian network(BN),and propose an effective method of extracting the weld reinforceme... We present a novel method to monitor the weld geometry for metal inert gas(MIG)welding process with galvanized steel plates using Bayesian network(BN),and propose an effective method of extracting the weld reinforcement and width online.The laser vision sensor is mounted after the welding torch and used to profile the weld.With the extracted weld geometry and the adopted process parameters,a back propagation neural network(BPNN)is constructed offline and used to predict the weld reinforcement and width corresponding to the current parameter settings.A BN from welding experience and tests is presented to implement the decision making of welding current/voltage when the error between the predictive geometry and the actual one occurs.This study can deal with the negative welding tendency to adapt to welding randomness and indicates a valuable application prospect in the welding field. 展开更多
关键词 galvanized steel plate weld geometry laser vision sensor bayesian network(BN) back propagation neural network(BPNN)
原文传递
Application of artificial neural network to calculation of solitary wave run-up 被引量:1
6
作者 You-xing WEI Deng-ting WANG Qing-jun LIU 《Water Science and Engineering》 EI CAS 2010年第3期304-312,共9页
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a... The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up. 展开更多
关键词 solitary wave run-up artificial neural network back-propagation (BP) network additional momentum method auto-adjusting learning factor
在线阅读 下载PDF
Modeling and Simulation of Time Series Prediction Based on Dynamic Neural Network
7
作者 王雪松 程玉虎 彭光正 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期148-151,共4页
Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic... Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic defects of back-propagation (BP) algorithm that cannot update network weights incrementally, a hybrid algorithm combining the temporal difference (TD) method with BP algorithm to train Jordan NN is put forward. The proposed method is applied to predict the ash content of clean coal in jigging production real-time and multi-step. A practical example is also given and its application results indicate that the method has better performance than others and also offers a beneficial reference to the prediction of nonlinear time series. 展开更多
关键词 time series Jordan neural network(NN) back-propagation (BP) algorithm temporal difference (TD) method
在线阅读 下载PDF
基于Bayesian的期望最大化方法——BEM算法 被引量:5
8
作者 温津伟 罗四维 +1 位作者 赵嘉莉 韩臻 《计算机研究与发展》 EI CSCD 北大核心 2001年第7期821-825,共5页
通过对标准 EM算法收敛于局部极值的原因进行分析 ,提出了基于 Bayesian方法的神经网络新学习算法—— BEM算法 .该算法解决了标准 EM算法的上述缺陷 ,同时还可防止标准 EM算法 Overfitting情况的出现 ,并可防止标准 EM算法有时只响应... 通过对标准 EM算法收敛于局部极值的原因进行分析 ,提出了基于 Bayesian方法的神经网络新学习算法—— BEM算法 .该算法解决了标准 EM算法的上述缺陷 ,同时还可防止标准 EM算法 Overfitting情况的出现 ,并可防止标准 EM算法有时只响应单一模式而失去泛化能力情况的出现 .实验结果表明了该算法的正确性和有效性 .该算法对研究和发展标准 展开更多
关键词 随机神经网络 EM算法 bayesian方法 Wishart-Gaussian分布
在线阅读 下载PDF
Bayesian神经网络在EPR法检测汽轮机转子钢热脆化性能中的应用
9
作者 张胜寒 范永哲 陈颖敏 《动力工程》 EI CSCD 北大核心 2005年第6期860-864,共5页
为提高电化学动电位再活化法(EPR)检测汽轮机转子钢(30Cr2MoV)热脆性的检测精度,利用Bayesian神经网络建立了预测模型。根据EPR法测定的60组不同苦味酸电解液温度下,30Cr2MoV转子钢的活化峰电流密度与再活化峰电流密度比(Ia/Ir)的数据... 为提高电化学动电位再活化法(EPR)检测汽轮机转子钢(30Cr2MoV)热脆性的检测精度,利用Bayesian神经网络建立了预测模型。根据EPR法测定的60组不同苦味酸电解液温度下,30Cr2MoV转子钢的活化峰电流密度与再活化峰电流密度比(Ia/Ir)的数据、电解液温度、转子钢化学成分J参数和晶粒度参数(N),采用Bayesian正则化训练的神经网络,建立了转子钢脆性转变温度(FATT50)与电化学特征值、电解液温度、转子钢化学成分J参数和晶粒度参数(N)之间的映射模型。利用训练好的网络预测了新的转子钢材料的脆性转变温度。结果表明:网络的训练误差和检验误差都在±20℃范围内,小于多元线性回归法得到的误差。因此,Bayesian神经网络能较准确地用来预测转子钢材料的脆性转变温度。 展开更多
关键词 动力机械工程 汽轮机转子 bayesian神经网络 热脆性 EPR法
在线阅读 下载PDF
Modeling uncertainty propagation in Eccentric Braced Frames using Endurance Time method and Radial Basis Function networks
10
作者 Mohsen MASOOMZADEH Mohammad Ch.BASIM +1 位作者 Mohammad Reza CHENAGHLOU Amir H.GANDOMI 《Frontiers of Structural and Civil Engineering》 2025年第3期378-395,共18页
A robust analytical model of Eccentric Braced Frames (EBFs), as a well-known seismic resistance system, helps to comprehensive earthquake-induced risk assessment of buildings in different performance levels. Recently,... A robust analytical model of Eccentric Braced Frames (EBFs), as a well-known seismic resistance system, helps to comprehensive earthquake-induced risk assessment of buildings in different performance levels. Recently, the modeling parameters have been introduced to simulate the hysteretic behavior of shear links in EBFs with specific Coefficient of Variation associated with each parameter to consider the uncertainties. The main purpose of this paper is to assess the effect of these uncertainties in the seismic response of EBFs by combining different sources of aleatory and epistemic uncertainties while making a balance between the required computational effort and the accuracy of the responses. This assessment is carried out in multiple performance levels using Endurance Time (ET) method as an efficient Nonlinear Time History Analysis. To demonstrate the method, a 4-story EBF that considers behavioral parameters has been considered. First, a sensitivity analysis using One-Variable-At-a-Time procedure and the ET method has been utilized to sort the parameters with regard to their importance in seismic responses in two intensity levels. A sampling-based reliability method is first used to propagate the modeling uncertainties into the fragility curves of the structure. Radial Basis Function Networks are then utilized to estimate the structural responses, which makes it feasible to propagate the uncertainties with an affordable computational effort. The Design of Experiments technique is implemented to acquire the training data, reducing the required data. The results show that the mathematical relationships defined by Artificial Neural Networks and using the ET method can estimate the median Intensity Measures and shifts in dispersions with acceptable accuracy. 展开更多
关键词 Eccentric Braced Frames uncertainty propagation behavioral parameters Endurance Time method correlation Latin hypercube sampling Artificial neural networks Radial Basis Function networks
原文传递
A fast computational method for the landing footprints of space-to-ground vehicles 被引量:2
11
作者 LIU Qingguo LIU Xinxue +1 位作者 WU Jian LI Yaxiong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第5期1062-1076,共15页
Fast computation of the landing footprint of a space-to-ground vehicle is a basic requirement for the deployment of parking orbits, as well as for enabling decision makers to develop real-time programs of transfer tra... Fast computation of the landing footprint of a space-to-ground vehicle is a basic requirement for the deployment of parking orbits, as well as for enabling decision makers to develop real-time programs of transfer trajectories. In order to address the usually slow computational time for the determination of the landing footprint of a space-to-ground vehicle under finite thrust, this work proposes a method that uses polynomial equations to describe the boundaries of the landing footprint and uses back propagation(BP) neural networks to quickly determine the landing footprint of the space-to-ground vehicle. First, given orbital parameters and a manoeuvre moment, the solution model of the landing footprint of a space-to-ground vehicle under finite thrust is established. Second, given arbitrary orbital parameters and an arbitrary manoeuvre moment, a fast computational model for the landing footprint of a space-to-ground vehicle based on BP neural networks is provided.Finally, the simulation results demonstrate that under the premise of ensuring accuracy, the proposed method can quickly determine the landing footprint of a space-to-ground vehicle with arbitrary orbital parameters and arbitrary manoeuvre moments. The proposed fast computational method for determining a landing footprint lays a foundation for the parking-orbit configuration and supports the design of real-time transfer trajectories. 展开更多
关键词 space-to-ground vehicle landing footprint back propagation(BP)neural network fast computational method Pontryagin's minimum principle
在线阅读 下载PDF
CONVERGENCE OF GRADIENT METHOD WITH MOMENTUM FOR BACK-PROPAGATION NEURAL NETWORKS 被引量:5
12
作者 Wei Wu Naimin Zhang +2 位作者 Zhengxue Li Long Li Yan Liu 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第4期613-623,共11页
In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. C... In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. Corresponding convergence results are proved. 展开更多
关键词 Back-propagation (BP) neural networks Gradient method MOMENTUM Convergence.
原文传递
基于PSO-BP的自平衡法试桩技术平衡点位置研究 被引量:2
13
作者 欧孝夺 梁枫 江杰 《广西大学学报(自然科学版)》 北大核心 2025年第2期231-241,共11页
针对自平衡法静载试验在灰岩地区应用较少,且工程中常用规范经验公式来确定平衡点位置存在较大误差的问题,提出以桩长、桩径、土层弹性模量为输入参数,构建PSO-BP神经网络平衡点位置的预测模型。通过将仿真预测值与真实值进行对比,并结... 针对自平衡法静载试验在灰岩地区应用较少,且工程中常用规范经验公式来确定平衡点位置存在较大误差的问题,提出以桩长、桩径、土层弹性模量为输入参数,构建PSO-BP神经网络平衡点位置的预测模型。通过将仿真预测值与真实值进行对比,并结合工程实例来验证本模型的适用性。结果表明,结合粒子群算法优化的PSO-BP神经网络模型,其平衡点位置预测值与真实值的平均相对误差控制在1.93%以内,而BP神经网络的平衡点位置预测值平均相对误差最高可达14.83%;依托来宾市当地以灰岩为持力层的工程试桩数据构建的PSO-BP神经网络平衡点位置预测模型,其仿真预测结果的均方根误差(R_(MSE))为0.294,决定系数R^(2)为0.988,预测值与真实值的相对误差在3.0%以内;在工程实例的对比验证中,PSO-BP神经网络模型在平衡点位置预测上的精度高于规范经验公式法,更接近实际位置,可作为灰岩地区基桩自平衡试桩测试的平衡点位置确定的有效手段。 展开更多
关键词 自平衡法 平衡点 粒子群优化-反向传播神经网络 粒子群算法 灰岩
在线阅读 下载PDF
基于熵权法结合星点设计-效应面法和反向传播人工神经网络优选黄柏苍术水丸制备工艺 被引量:1
14
作者 刘奇 姜慧洁 +5 位作者 章越 胡云莉 慎凯峰 张娟 姜艳 周丹英 《中国现代应用药学》 北大核心 2025年第1期72-78,共7页
目的优选黄柏苍术水丸制备工艺。方法以丸剂含水量、丸剂溶散时限、外观评分、盐酸小檗碱、苍术素、欧前胡素以及粉防己碱和防己诺林碱之和为评价指标,以挤滚比、加水量、干燥时间为影响因素,经单因素试验研究,再选用效应面法,采用熵权... 目的优选黄柏苍术水丸制备工艺。方法以丸剂含水量、丸剂溶散时限、外观评分、盐酸小檗碱、苍术素、欧前胡素以及粉防己碱和防己诺林碱之和为评价指标,以挤滚比、加水量、干燥时间为影响因素,经单因素试验研究,再选用效应面法,采用熵权法进行综合评价,筛选黄柏苍术水丸最佳制备工艺参数,同时利用反向传播人工神经网络(back propagation artificial neural network,BP-ANN)预测最佳工艺参数,并对两者进行验证对比。结果最佳工艺条件为挤滚比为1∶1.2、加水量为26%、干燥时间为8.2 h时,各评价指标的综合评分最高;BP-ANN神经网络优化工艺参数优于响应面工艺,结果更精准稳定。结论优选的黄柏苍术水丸制备工艺科学合理,稳定可行,为后续大生产控制及质量标准建立打下良好基础。 展开更多
关键词 黄柏苍术水丸 制备工艺 熵权法 星点设计-效应面法 反向传播人工神经网络
原文传递
基于神经网络超参数优化方法的堆芯中子学参数预测研究
15
作者 张凡 张俊达 +3 位作者 孙启政 肖维 刘晓晶 张滕飞 《核技术》 北大核心 2025年第10期178-187,共10页
神经网络可以基于大量数据学习输入输出变量之间的关系,具有强大的拟合能力,在包括核工程计算领域常用作程序的代理模型。中子输运计算作为中子学模拟的核心环节之一,其耗时较长的问题可以利用神经网络模型来解决。然而,神经网络模型具... 神经网络可以基于大量数据学习输入输出变量之间的关系,具有强大的拟合能力,在包括核工程计算领域常用作程序的代理模型。中子输运计算作为中子学模拟的核心环节之一,其耗时较长的问题可以利用神经网络模型来解决。然而,神经网络模型具有一系列超参数需要设置,而手动调节这些超参数工作量大,重复繁琐,只能依靠经验进行,而且求解不同问题时这些超参数不可复用。为了解决以上问题,本文提出了一种采用贝叶斯优化(Bayesian Optimization)的算法来调节神经网络超参数,结合了自适应学习率衰减、损失函数优化方法,它可以针对不同问题的数据集,自动搜索超参数的最佳组合,以获得最佳性能,具有很高的灵活性和效率,泛化性强。本文对TAKEDA基准题得到的堆芯关键参数进行拟合,数据集由VITAS程序计算TAKEDA1、2基准题得出,分别为10 000与20 000组,输入为堆芯排布顺序,输出为有效增殖因数keff和区域积分通量φ,并将堆芯排布顺序映射为一维向量,以6∶4的比例划分为训练集和验证集。将手动设置的超参数及贝叶斯优化输出的超参数作为神经网络训练参数进行了实验比较,结果表明:贝叶斯优化有效地提升了神经网络的精度,有效增殖因数keff的平均误差在1.50×10-3以内,TAKEDA1数据集上区域积分通量φ的平均误差率为1.72%,最大误差率为7.56%。该研究可为人工智能在堆芯物理计算理论的应用提供一定参考。 展开更多
关键词 贝叶斯优化超参数 全连接神经网络 中子输运计算 学习率衰减 损失函数优化方法
原文传递
金银花低共熔溶剂提取液中黄酮纯化工艺优化
16
作者 赵惠茹 孙婷婷 +5 位作者 李佳乐 靖会 余雪菲 贾新泽 王雪蓉 乔雪婷 《中成药》 北大核心 2025年第12期3923-3929,共7页
目的 优化金银花低共熔溶剂提取液中黄酮纯化工艺。方法 在单因素试验基础上,以上样液质量浓度、洗脱剂(乙醇)体积分数、洗脱体积流量为影响因素,黄酮转移率为评价指标,分别采用响应面法、反向传播(BP)神经网络结合遗传算法优化纯化工... 目的 优化金银花低共熔溶剂提取液中黄酮纯化工艺。方法 在单因素试验基础上,以上样液质量浓度、洗脱剂(乙醇)体积分数、洗脱体积流量为影响因素,黄酮转移率为评价指标,分别采用响应面法、反向传播(BP)神经网络结合遗传算法优化纯化工艺。结果 BP神经网络结合遗传算法的优化效果优于响应面法。最佳条件为AB-8大孔吸附树脂,上样液质量浓度0.93 mg/mL,洗脱剂体积分数75%,洗脱体积流量2 BV/h,黄酮转移率为91.87%。结论 该方法可靠稳定,可用于纯化金银花低共熔溶剂提取液中的黄酮。 展开更多
关键词 金银花 低共熔溶剂提取液 黄酮 纯化工艺 响应面法 反向传播(BP)神经网络 遗传算法
暂未订购
贝叶斯正则化优化BP神经网络估算SOH 被引量:2
17
作者 朱聪聪 郭晟 +1 位作者 常海涛 路密 《电池》 北大核心 2025年第1期25-31,共7页
为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应... 为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应性。以充电全过程提取健康特征验证模型精度;以放电片段数据提取健康特征模拟实际工况。训练后的模型在充电全过程提取特征时的均方根误差(RMSE)和平均绝对误差(MAE)均小于1.65%,采用放电片段提取特征时的RMSE和MAE均小于3.85%,相较于未优化的BP神经网络,两种方式的估算误差分别降低18%和41%以上。 展开更多
关键词 锂离子电池 健康状态(SOH) 贝叶斯正则化算法 反向传播(BP)神经网络 健康特征 先验分布 后验分布
在线阅读 下载PDF
基于人工神经网络正演模拟的航空电磁数据变维数贝叶斯反演
18
作者 刘午扬 殷长春 +4 位作者 苏扬 张博 薛舒杨 刘云鹤 任秀艳 《地球物理学报》 北大核心 2025年第8期2928-2940,共13页
传统贝叶斯反演不仅可以获得最大概率解,还可通过获得的模型参数的概率分布来判断反演结果的可靠性.然而,计算概率分布所需的模型样本会产生巨大的工作量,这将严重降低传统贝叶斯方法的计算效率,无法进行大数据量反演,因此实用性受到限... 传统贝叶斯反演不仅可以获得最大概率解,还可通过获得的模型参数的概率分布来判断反演结果的可靠性.然而,计算概率分布所需的模型样本会产生巨大的工作量,这将严重降低传统贝叶斯方法的计算效率,无法进行大数据量反演,因此实用性受到限制.本文利用人工神经网络拟合的矩阵代替正向建模过程,对传统贝叶斯反演过程进行有效加速,在保证计算精度的情况下大大减少计算时间,从而使实际测量数据的反演成为可能.我们使用合成数据和实测数据验证了本文反演算法的有效性. 展开更多
关键词 航空电磁 反演 变维数 贝叶斯方法 人工神经网络
在线阅读 下载PDF
基于神经网络的多随机参数非线性悬架系统响应分析 被引量:1
19
作者 陈强强 周继磊 +1 位作者 于孟娜 韩道远 《机电工程》 北大核心 2025年第7期1403-1412,共10页
车辆悬架系统的生产制造误差会使得该悬架系统各个结构参数具有不确定性,同时作用于非线性悬架系统的路面激励也具有明显的随机性和时变性。针对这一问题,研究了不确定因素对多随机参数非线性悬架系统响应的影响。首先,采用了七自由度... 车辆悬架系统的生产制造误差会使得该悬架系统各个结构参数具有不确定性,同时作用于非线性悬架系统的路面激励也具有明显的随机性和时变性。针对这一问题,研究了不确定因素对多随机参数非线性悬架系统响应的影响。首先,采用了七自由度非线性车辆悬架系统动力学模型,构建了白噪声路面激励时域模型;然后,建立了一种基于粒子群优化的反向传播神经网络(BPNN-PSO)预测模型,基于神经网络的直接积分法(DPIM),展开了针对非线性悬架系统的随机动力方程及其相应求解策略的研究;最后,针对非线性悬架系统随机振动直接概率积分法,提出了一种基于MATLAB的分析程序,对不同等级路面激励和参数随机条件下,非线性悬架系统振动响应的均值和标准差进行了研究。研究结果表明:直接概率积分法与蒙特卡洛模拟相比,系统的时变概率密度处理时间成本降低,效率更高;车体质量对车体位移的影响显著,其标准差为0.2×10^(-3)m~0.5×10^(-3)m,轮胎刚度对车体位移的影响最小,其标准差约为0.1×10^(-3)m~0.25×10^(-3)m;悬架的弹簧刚度对车体加速度的影响最小,其标准差约为0.5×10^(-2)m/s^(2)~2×10^(-2)m/s^(2),车辆质量和轮胎刚度的随机性对车辆动态行为影响较大。 展开更多
关键词 直接概率积分法 白噪声路面 反向传播神经网络 非线性车辆悬架系统 粒子群算法 路面不平度
在线阅读 下载PDF
基于经验正交函数和贝叶斯神经网络的水下声场预报研究
20
作者 蒋方冰 吴金荣 +2 位作者 侯倩男 张祚祥 莫亚枭 《哈尔滨工程大学学报》 北大核心 2025年第8期1508-1515,共8页
在水下声场预报中,数据驱动模型的预报精度主要取决于训练样本数对样本空间的覆盖程度。针对现有方法多局限于单一水文环境、且水文样本数量不足导致精度下降的问题,本文提出一种基于经验正交函数和贝叶斯神经网络的水下声场预报方法。... 在水下声场预报中,数据驱动模型的预报精度主要取决于训练样本数对样本空间的覆盖程度。针对现有方法多局限于单一水文环境、且水文样本数量不足导致精度下降的问题,本文提出一种基于经验正交函数和贝叶斯神经网络的水下声场预报方法。利用经验正交函数有效降低声速剖面输入维度,并通过其系数组合生成覆盖多样化水文环境的样本集;进而借助具有强泛化能力的贝叶斯神经网络在部分数据空间内学习有效特征,预报变化水文条件下的声传播损失,并给出置信区间。结果表明:相较于传统神经网络,该方法在训练集范围内的预报误差更小,对未知数据的适应能力更强,且通过概率建模可实现端到端的不确定性量化,提升了数据驱动模型在复杂水文条件下的鲁棒性与可靠性。 展开更多
关键词 经验正交函数 数据驱动模型 贝叶斯神经网络 声速剖面 水声传播损失 声场预报 不确定性量化 置信区间
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部