期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
Bayesian model averaging(BMA)for nuclear data evaluation 被引量:2
1
作者 E.Alhassan D.Rochman +1 位作者 G.Schnabel A.J.Koning 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期193-218,共26页
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s... To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation. 展开更多
关键词 bayesian model averaging(bma) Nuclear data Nuclear reaction models model parameters TALYS code system Covariances
在线阅读 下载PDF
基于CBMA的面板堆石坝变形预测不确定性分析方法研究
2
作者 程琳 张雨鹏 +3 位作者 王赵汉 马春辉 李波 许增光 《水资源与水工程学报》 北大核心 2025年第3期125-134,共10页
基于实测数据建立预测模型是面板堆石坝变形安全监控的主要方式之一。由于面板堆石坝变形的影响因素复杂,预测模型涉及因子较多,导致常规建模方法存在精度低、计算复杂且难以量化模型不确定性的问题。为此,提出一种基于Copula贝叶斯模... 基于实测数据建立预测模型是面板堆石坝变形安全监控的主要方式之一。由于面板堆石坝变形的影响因素复杂,预测模型涉及因子较多,导致常规建模方法存在精度低、计算复杂且难以量化模型不确定性的问题。为此,提出一种基于Copula贝叶斯模型平均的面板堆石坝变形预测模型构建方法。该方法利用Copula函数刻画测点变形与影响因子之间的联合分布,以替代贝叶斯模型平均中的均匀分布假设,并结合差分演化马尔科夫链蒙特卡洛算法对贝叶斯模型平均的计算体系进行优化。将该方法应用于公伯峡面板堆石坝的变形监测,分析结果表明:该方法能有效考虑模型不确定性,通过因子权重的合理分配为变形溯源提供理论依据,其预测精度优于逐步回归等传统模型,较传统贝叶斯模型平均方法也有提升。 展开更多
关键词 面板堆石坝 变形预测 COPULA理论 贝叶斯模型平均
在线阅读 下载PDF
基于BMA的混凝土重力坝自振频率安全监测模型
3
作者 程琳 袁喜娜 +1 位作者 马春辉 贾冬焱 《地震工程与工程振动》 北大核心 2025年第6期73-85,共13页
混凝土重力坝的自振频率包含结构整体和局部健康状态信息。基于自振频率来监控混凝土重力坝的健康状态,需要建立各种环境变量与各阶自振频率之间的复杂非线性映射关系,建模过程充满了不确定性。为此,该文通过亲和力传播(affinity propag... 混凝土重力坝的自振频率包含结构整体和局部健康状态信息。基于自振频率来监控混凝土重力坝的健康状态,需要建立各种环境变量与各阶自振频率之间的复杂非线性映射关系,建模过程充满了不确定性。为此,该文通过亲和力传播(affinity propagation,AP)算法对模态稳定图进行聚类分析来实现模态参数的自动识别,通过环境量对自振频率影响规律的机理分析,并引入贝叶斯模型平均(Bayesian model averaging,BMA)技术来建立混凝土重力坝自振频率的安全监控模型,将模型自身不确定性考虑在内,可以自动平衡模型的复杂度与拟合程度,从而确定出对预测真正有贡献的输入变量。实际工程应用表明,采用基于BMA的混凝土重力坝自振频率安全监测模型,可以准确地模拟结构频率与环境量之间的映射关系,从而使总体模型具有更加准确的预测效果,能够很好地应用于混凝土重力坝安全性能监测,具有良好的工程应用前景。 展开更多
关键词 混凝土重力坝 模态识别 贝叶斯模型平均 安全监测模型
在线阅读 下载PDF
创新价值链视角下建筑业上市公司技术创新效率研究——基于超效率网络SBM模型和BMA方法的实证分析
4
作者 程敏 易小凤 王方亮 《运筹与管理》 北大核心 2025年第5期156-163,共8页
为了解建筑业上市公司技术创新效率及其影响因素,基于创新价值链视角,将超效率网络SBM模型和DEA窗口分析法相结合对2016-2020年我国48家建筑业上市公司的技术创新效率进行测度,采用贝叶斯模型平均方法分析其影响因素。研究结果表明:(1)... 为了解建筑业上市公司技术创新效率及其影响因素,基于创新价值链视角,将超效率网络SBM模型和DEA窗口分析法相结合对2016-2020年我国48家建筑业上市公司的技术创新效率进行测度,采用贝叶斯模型平均方法分析其影响因素。研究结果表明:(1)研究期内各年48家企业技术创新效率均值介于0.50~0.54之间,技术创新效率有待提升;(2)根据技术研发效率和成果转化效率将样本企业分为四类,8家企业属于高效集约型、12家企业属于低研发高转化型、9家企业为高研发低转化型、19家企业为粗放低效型;(3)成立年限、成长能力和盈利能力对建筑业上市公司技术创新效率有显著的正向影响,企业规模、研发财力资源投入强度、政府扶持以及研发人力资源投入强度对其有显著的负向影响。最后依据研究结果提出了效率改善的建议。 展开更多
关键词 创新价值链 技术创新效率 建筑业 超效率网络SBM模型 贝叶斯模型平均
在线阅读 下载PDF
Response of Growing Season Gross Primary Production to El Nino in Different Phases of the Pacific Decadal Oscillation over Eastern China Based on Bayesian Model Averaging 被引量:4
5
作者 Yueyue LI Li DAN +5 位作者 Jing PENG Junbang WANG Fuqiang YANG Dongdong GAO Xiujing YANG Qiang YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第9期1580-1595,共16页
Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the ... Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the Multi-scale Terrestrial Model Intercomparison Project using Bayesian model averaging(BMA).The spatial anomalies of detrended BMA GPP during the growing seasons of typical El Nino years indicated that GPP response to El Nino varies with Pacific Decadal Oscillation(PDO) phases: when the PDO was in the cool phase,it was likely that GPP was greater in northern China(32°–38°N,111°–122°E) and less in the Yangtze River valley(28°–32°N,111°–122°E);in contrast,when PDO was in the warm phase,the GPP anomalies were usually reversed in these two regions.The consistent spatiotemporal pattern and high partial correlation revealed that rainfall dominated this phenomenon.The previously published findings on how El Nino during different phases of PDO affecting rainfall in eastern China make the statistical relationship between GPP and El Nino in this study theoretically credible.This paper not only introduces an effective way to use BMA in grids that have mixed plant function types,but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Nino and PDO. 展开更多
关键词 East China bayesian model averaging Gross primary production El Nino Pacific Decadal Oscillation Monsoon rainfall
在线阅读 下载PDF
Improving microwave brightness temperature predictions based on Bayesian model averaging ensemble approach 被引量:1
6
作者 Binghao JIA Zhenghui XIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第11期1501-1516,共16页
The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simu... The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64. 展开更多
关键词 bayesian model averaging bma microwave brightness temperature com-munity microwave emission model (CMEM) community land model version 4.5 (CLM4.5)
在线阅读 下载PDF
Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging 被引量:3
7
作者 YANG Jing FANG Gonghuan +1 位作者 CHEN Yaning Philippe DE-MAEYER 《Journal of Arid Land》 SCIE CSCD 2017年第4期622-634,共13页
Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan ... Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21^(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease. 展开更多
关键词 climate change GCM ensemble bayesian model averaging Tianshan and northern Kunlun Mountains
在线阅读 下载PDF
Improving the simulation of terrestrial water storage anomalies over China using a Bayesian model averaging ensemble approach 被引量:1
8
作者 LIU Jian-Guo JIA Bing-Hao +1 位作者 XIE Zheng-Hui SHI Chun-Xiang 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第4期322-329,共8页
The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model ph... The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data. 展开更多
关键词 Terrestrial water storage anomalies multi-forcing and multi-model ensemble simulation bayesian model averaging spatiotemporal variation UNCERTAINTY
在线阅读 下载PDF
Improving the accuracy of precipitation estimates in a typical inland arid area of China using a dynamic Bayesian model averaging approach
9
作者 XU Wenjie DING Jianli +2 位作者 BAO Qingling WANG Jinjie XU Kun 《Journal of Arid Land》 SCIE CSCD 2024年第3期331-354,共24页
Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating a... Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions. 展开更多
关键词 precipitation estimates satellite-based and reanalysis precipitation dynamic bayesian model averaging streamflow simulation Ebinur Lake Basin XINJIANG
在线阅读 下载PDF
Effects of Bayesian Model Selection on Frequentist Performances: An Alternative Approach
10
作者 Georges Nguefack-Tsague Walter Zucchini 《Applied Mathematics》 2016年第10期1103-1115,共14页
It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selectio... It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selection estimator (PMSE) whose properties are hard to derive. Conditioning on data at hand (as it is usually the case), Bayesian model selection is free of this phenomenon. This paper is concerned with the properties of Bayesian estimator obtained after model selection when the frequentist (long run) performances of the resulted Bayesian estimator are of interest. The proposed method, using Bayesian decision theory, is based on the well known Bayesian model averaging (BMA)’s machinery;and outperforms PMSE and BMA. It is shown that if the unconditional model selection probability is equal to model prior, then the proposed approach reduces BMA. The method is illustrated using Bernoulli trials. 展开更多
关键词 model Selection Uncertainty model Uncertainty bayesian model Selection bayesian model Averaging bayesian Theory Frequentist Performance
在线阅读 下载PDF
Comparison between Different ESI Methods on Refractory Epilepsy Patients Shows a High Sensitivity for Bayesian Model Averaging
11
作者 Danilo Maziero Agustin Lage Castellanos +1 位作者 Carlos Ernesto Garrido Salmon Tonicarlo Rodrigues Velasco 《Journal of Biomedical Science and Engineering》 2014年第9期662-674,共13页
Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showin... Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showing encouraging results for mapping interictal epileptiform discharges (IED). However, ESI is underused in planning epilepsy surgery. This is basically due to the wide availability of methods for solving the electromagnetism inverse problem (e-IP) associated to few studies using EEG setups similar to those most commonly used in clinical setting. In this study, we applied six different methods of solving the e-IP based on IEDs of 20 focal epilepsy patients that presented abnormalities in their MRI. We compared the ESI maps obtained by each method with the location of the abnormality, calculating the Euclidian distances from the center of the lesion to the closest border of the method solution (CL-BM) and also to the solution’s maxima (CL-MM). We also applied a score system in order to allow us to evaluate the sensitivity of each method for temporal and extra temporal patients. In our patients, the Bayesian Model Averaging method had a sensitivity of 86% and the shortest CL-MM. This method also had more restricted solutions that were more representative of epileptogenic activities than those obtained by the other methods. 展开更多
关键词 EEG EPILEPSY Electrical SOURCE Imaging bayesian model AVERAGING
暂未订购
A Mixture-Based Bayesian Model Averaging Method
12
作者 Georges Nguefack-Tsague Walter Zucchini 《Open Journal of Statistics》 2016年第2期220-228,共9页
Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator ar... Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator are hard to derive. This paper proposes a mixture of priors and sampling distributions as a basic of a Bayes estimator. The frequentist properties of the new Bayes estimator are automatically derived from Bayesian decision theory. It is shown that if all competing models have the same parametric form, the new Bayes estimator reduces to BMA estimator. The method is applied to the daily exchange rate Euro to US Dollar. 展开更多
关键词 MIXTURE bayesian model Selection bayesian model Averaging bayesian Theory Frequentist Performance
在线阅读 下载PDF
稻米品质对气候响应的区域分异机制与BMA预测模型研究
13
作者 吴伟鑫 张文婧 +3 位作者 杨军 刘丹 张方亮 田俊 《气象与减灾研究》 2025年第2期107-117,共11页
为解析稻米品质对气候的响应机制,基于2017-2019年中国三大稻区(南方双季稻区、南方一季中稻区、北方一季稻区)的跨区联网试验数据和气象观测资料,构建了基于贝叶斯模型平均(BMA)集成的稻米气候品质预测模型。结果表明:BMA集成显著提升... 为解析稻米品质对气候的响应机制,基于2017-2019年中国三大稻区(南方双季稻区、南方一季中稻区、北方一季稻区)的跨区联网试验数据和气象观测资料,构建了基于贝叶斯模型平均(BMA)集成的稻米气候品质预测模型。结果表明:BMA集成显著提升了稻米品质预测精度和准确性,特别是在克服南方一季中稻区单模型预测不稳定性方面效果突出。气候驱动稻米品质的机制存在显著区域分异,整精米率主控因子在南方双季稻区为齐穗至成熟期降水量,南方一季中稻区为齐穗至成熟期平均气温,北方一季稻区为播种至齐穗期累计降水量;垩白粒率的主要影响因素在南方早稻区为播种至齐穗期日最高气温大于30℃的累计值,南方晚稻区为齐穗后最大连续干燥日数,南方一季中稻区为播种至齐穗期日最高气温大于35℃的累计值,北方一季稻区为齐穗后10-20 d平均气温;直链淀粉含量的驱动因素在南方早稻区为播种至齐穗期累计太阳辐射,南方晚稻区为齐穗后最大连续干燥日数,南方一季中稻区为齐穗至成熟期累计太阳辐射,北方一季稻区为播种至齐穗期平均日最低气温;不同稻区的蛋白质含量则主要受播种至齐穗期高温日数、齐穗至成熟期最大连续干燥日数和齐穗前积温影响。研究阐明了气候-稻米品质的非线性响应规律,为区域优质水稻适应性栽培提供了技术支撑。 展开更多
关键词 稻米品质 气候因子 响应机制 机器学习 贝叶斯模型平均(bma)
在线阅读 下载PDF
Continuous Bayesian probability estimator in predictions of nuclear charge radii
14
作者 Jian Liu Kai-Zhong Tan +4 位作者 Lei Wang Wan-Qing Gao Tian-Shuai Shang Jian Li Chang Xu 《Nuclear Science and Techniques》 2025年第11期283-293,共11页
Recently,machine learning has become a powerful tool for predicting nuclear charge radius RC,providing novel insights into complex physical phenomena.This study employs a continuous Bayesian probability(CBP)estimator ... Recently,machine learning has become a powerful tool for predicting nuclear charge radius RC,providing novel insights into complex physical phenomena.This study employs a continuous Bayesian probability(CBP)estimator and Bayesian model averaging(BMA)to optimize the predictions of RCfrom sophisticated theoretical models.The CBP estimator treats the residual between the theoretical and experimental values of RCas a continuous variable and derives its posterior probability density function(PDF)from Bayesian theory.The BMA method assigns weights to models based on their predictive performance for benchmark nuclei,thereby accounting for the unique strengths of each model.In global optimization,the CBP estimator improved the predictive accuracy of the three theoretical models by approximately 60%.The extrapolation analyses consistently achieved an improvement rate of approximately 45%,demonstrating the robustness of the CBP estimator.Furthermore,the combination of the CBP and BMA methods reduces the standard deviation to below 0.02 fm,effectively reproducing the pronounced shell effects on RCof the Ca and Sr isotope chains.The studies in this paper propose an efficient method to accurately describe RCof unknown nuclei,with potential applications in research on other nuclear properties. 展开更多
关键词 Machine learning Nuclear charge radii Continuous bayesian probability estimator bayesian model averaging
在线阅读 下载PDF
清江流域降水的多模式BMA概率预报试验 被引量:13
15
作者 祁海霞 彭涛 +4 位作者 林春泽 彭婷 吉璐莹 李兰 孟翠丽 《气象》 CSCD 北大核心 2020年第1期108-118,共11页
基于TIGGE资料中的ECMWF、UKMO、JMA、CMA四套模式的2016年6月1至7月31日逐日降水集合预报资料,结合清江流域10个国家基准站观测数据,建立了流域贝叶斯模型平均(BMA)概率预报模型,开展流域多模式集合BMA技术的概率预报试验与评估。结果... 基于TIGGE资料中的ECMWF、UKMO、JMA、CMA四套模式的2016年6月1至7月31日逐日降水集合预报资料,结合清江流域10个国家基准站观测数据,建立了流域贝叶斯模型平均(BMA)概率预报模型,开展流域多模式集合BMA技术的概率预报试验与评估。结果表明,在清江流域多模式集合的BMA模型最佳滑动训练期长度为40 d,BMA模型预报比原始集合预报有更高预报技巧,比四个原始集合预报MAE平均值减少近11%左右,而对于CRPS除了CMA中心无订正效果外,较其他三个模式平均值提高近15%左右。多模式集合BMA技术能预报降水全概率PDF曲线和大于某个降水量级的概率,同时能给出确定性降水预报,对于极端强降水(大暴雨一特大暴雨量级),BMA 75~90百分位数预报效果较好,对于强降水(暴雨量级),BMA 50~75百分位数预报效果较好,对于一般性降水(小雨一大雨量级),BMA确定性预报结果或50百分位数预报效果较好。 展开更多
关键词 TIGGE 贝叶斯模型平均(bma) 多模式集合 概率预报
在线阅读 下载PDF
基于TIGGE多模式集合的24小时气温BMA概率预报 被引量:37
16
作者 刘建国 谢正辉 +1 位作者 赵琳娜 贾炳浩 《大气科学》 CSCD 北大核心 2013年第1期43-53,共11页
利用TIGGE(THORPEXInteractiveGrandGlobalEnsemble)单中心集合预报系统(ECMWF、UnitedKingdomMeteorologicalOffice、ChinaMeteorologicalAdministration和NCEP)以及由此所构成的多中心模式超级集合预报系统24小时地面日均气温预报,结... 利用TIGGE(THORPEXInteractiveGrandGlobalEnsemble)单中心集合预报系统(ECMWF、UnitedKingdomMeteorologicalOffice、ChinaMeteorologicalAdministration和NCEP)以及由此所构成的多中心模式超级集合预报系统24小时地面日均气温预报,结合淮河流域地面观测率定贝叶斯模型平均(Bayesianmodelaveraging,BMA)参数,从而建立地面日均气温BMA概率预报模型。由此针对淮河流域进行地面日均气温BMA概率预报及其检验与评估,结果表明BMA模型比原始集合预报效果好;单中心的BMA概率预报都有较好的预报效果,其中ECMWF最好。多中心模式超级集合比单中心BMA概率预报效果更好,采用可替换原则比普通的多中心模式超级集合BMA模型计算量小,且在上述BMA集合预报系统中效果最好。它与原始集合预报相比其平均绝对误差减少近7%,其连续等级概率评分提高近10%。基于采用可替换原则的多中心模式超级集合BMA概率预报,针对研究区域提出了极端高温预警方案,这对防范高温天气有着重要意义。 展开更多
关键词 贝叶斯模型平均 TIGGE 地面日均气温 集合预报 概率预报
在线阅读 下载PDF
中国环境规制政策工具的比较与选择——基于贝叶斯模型平均(BMA)方法的实证研究 被引量:146
17
作者 王红梅 《中国人口·资源与环境》 CSSCI CSCD 北大核心 2016年第9期132-138,共7页
改革开放以来,中国政府逐步构建起了命令—控制型、市场激励型、公众参与型和自愿行动型"四维一体"的环境政策工具体系。针对不同政策类型工具的有效性,很多学者已经运用多种方法进行了大量研究,但大多数学者只关注其中某一... 改革开放以来,中国政府逐步构建起了命令—控制型、市场激励型、公众参与型和自愿行动型"四维一体"的环境政策工具体系。针对不同政策类型工具的有效性,很多学者已经运用多种方法进行了大量研究,但大多数学者只关注其中某一种工具的治理效果,同时考虑所有政策工具效果的文献并不多见。本文首次运用贝叶斯模型平均(BMA)方法实证分析了不同类型环境政策工具在当前中国环境治理体系下的相对贡献程度,实证结果表明:命令—控制型工具和市场激励型工具仍然是当前中国治理环境污染最为有效的政策工具,公众参与型工具和自愿行动型工具的有效性相对较差。基于此,本文的政策建议是:首先,中国政府不仅需要构建完善的环保法律法规体系,更需要加大环保执法投入,提升环保执法的主动性;其次,中国政府应该进一步完善市场激励型工具,建立更加弹性化的排污收费标准和更为严格的排污惩罚制度,推动排污权交易制度更广泛地实施;再次,积极推动社会公众参与环境保护,降低社会公众的参与成本,使得社会公众能更加便捷地参与环境治理;最后,积极鼓励非政府组织、企业发起自愿性环保项目,对于推动环保标准的提升和环保法律法规的逐步完善,加强居民、企业的环境保护意识具有重要意义。因此,全社会环境问题的治理是一个系统性工程,必须采取相应的措施,充分运用命令—控制、市场激励、公众参与、自愿行动等正式和非正式的环境治理措施,形成一个有机、有序的环境治理体系,才能提升所有环境规制政策工具的有效性,促进经济社会可持续发展。 展开更多
关键词 环境规制政策工具 贝叶斯模型平均 绩效评价 中国
在线阅读 下载PDF
中国经济增长的决定因素分析——基于贝叶斯模型平均(BMA)方法的实证研究 被引量:5
18
作者 王亮 刘金全 《统计与信息论坛》 CSSCI 2010年第9期3-7,共5页
采用贝叶斯模型平均(Bayesian Model Averaging)方法,使用1990-2007年省际数据,对长期影响中国经济增长的诸多因素的有效性和稳健性进行了识别和检验。研究结论表明:高等教育发展阶段、工业化推进速度、对外开放程度、东部区位优势、消... 采用贝叶斯模型平均(Bayesian Model Averaging)方法,使用1990-2007年省际数据,对长期影响中国经济增长的诸多因素的有效性和稳健性进行了识别和检验。研究结论表明:高等教育发展阶段、工业化推进速度、对外开放程度、东部区位优势、消费能力和对内开放水平等6个解释变量对中国经济增长具有长期、持续和稳健的影响,是中国经济增长的长期决定因素。城市规模、中部区位优势和初始经济条件等3个解释变量对经济增长也具有一定的解释能力。此外,从解释变量对经济增长边际影响的程度来看,工业化推进速度变量对经济增长的边际影响最强,其次是消费能力变量和对外开放程度变量。 展开更多
关键词 增长回归 模型不确定性 贝叶斯模型平均
在线阅读 下载PDF
公司债信用利差对产出和通胀的预测——基于BMA模型的研究 被引量:2
19
作者 赵静 方兆本 朱俊鹏 《数理统计与管理》 CSSCI 北大核心 2018年第1期179-190,共12页
本文研究了2008年1月至2016年10月期间中国公司债信用利差对于产出和通胀的预测能力,通过将公司债按照期限和信用级别划分为不同组合得到多个信用利差序列,利用BMA框架下的样本外预测方法对工业增加值指数和居民消费者指数进行预测研究... 本文研究了2008年1月至2016年10月期间中国公司债信用利差对于产出和通胀的预测能力,通过将公司债按照期限和信用级别划分为不同组合得到多个信用利差序列,利用BMA框架下的样本外预测方法对工业增加值指数和居民消费者指数进行预测研究,结果显示信用风险较高以及到期期限较短的信用利差对产出包含显著的预测信息,且预测能力随时间变化而发生变化。这一方面表明了我国公司债信用利差已经包含了显著的经济前瞻性信息,债券定价市场化改革成果得以显现;另一方面也成为我国存在金融加速机制的实证依据,为宏观经济的预测和政策制定提供参考。 展开更多
关键词 信用利差 宏观经济预测 金融加速机制 bma样本外预测
原文传递
高技术产业技术创新效率关键影响因素分析——基于DEA-Malmquist和BMA方法的实证研究 被引量:42
20
作者 范德成 谷晓梅 《科研管理》 CSSCI CSCD 北大核心 2022年第1期70-78,共9页
高技术产业技术创新是适应和引领经济发展新常态的重要驱动。本研究运用DEA-Malmquist指数法测度中国大陆29个省市2011—2016年的技术创新效率,然后引入贝叶斯模型平均(BMA)方法,对22个可能影响技术创新效率的潜在因素进行识别和检验。... 高技术产业技术创新是适应和引领经济发展新常态的重要驱动。本研究运用DEA-Malmquist指数法测度中国大陆29个省市2011—2016年的技术创新效率,然后引入贝叶斯模型平均(BMA)方法,对22个可能影响技术创新效率的潜在因素进行识别和检验。结果表明:几年间中国高技术产业的技术创新效率平稳中略有上升,技术创新在增效和研发之间摇摆,不能兼顾,技术进步水平微降是阻碍各省市技术创新效率提高的主因;创新氛围、对外开放度、产业结构、经济发展水平、研发税收、所有制结构、政府支持是技术创新效率的关键影响因素;此外,自主创新倾向、企业与高校及科研院所合作水平对技术效率有关键影响,也应予以重点关注。 展开更多
关键词 技术创新效率 关键影响因素 贝叶斯模型平均 DEA-MALMQUIST 高技术产业
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部