期刊文献+
共找到182篇文章
< 1 2 10 >
每页显示 20 50 100
Bayesian model averaging(BMA)for nuclear data evaluation 被引量:2
1
作者 E.Alhassan D.Rochman +1 位作者 G.Schnabel A.J.Koning 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第11期193-218,共26页
To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen s... To ensure agreement between theoretical calculations and experimental data,parameters to selected nuclear physics models are perturbed and fine-tuned in nuclear data evaluations.This approach assumes that the chosen set of models accurately represents the‘true’distribution of considered observables.Furthermore,the models are chosen globally,indicating their applicability across the entire energy range of interest.However,this approach overlooks uncertainties inherent in the models themselves.In this work,we propose that instead of selecting globally a winning model set and proceeding with it as if it was the‘true’model set,we,instead,take a weighted average over multiple models within a Bayesian model averaging(BMA)framework,each weighted by its posterior probability.The method involves executing a set of TALYS calculations by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables.Next,computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain updated posterior distributions for selected cross sections and the elastic angular distributions.As the cross sections and elastic angular distributions were updated locally on a per-energy-point basis,the approach typically results in discontinuities or“kinks”in the cross section curves,and these were addressed using spline interpolation.The proposed BMA method was applied to the evaluation of proton-induced reactions on ^(58)Ni between 1 and 100 MeV.The results demonstrated a favorable comparison with experimental data as well as with the TENDL-2023 evaluation. 展开更多
关键词 bayesian model averaging(bma) Nuclear data Nuclear reaction models model parameters TALYS code system Covariances
在线阅读 下载PDF
基于CBMA的面板堆石坝变形预测不确定性分析方法研究
2
作者 程琳 张雨鹏 +3 位作者 王赵汉 马春辉 李波 许增光 《水资源与水工程学报》 北大核心 2025年第3期125-134,共10页
基于实测数据建立预测模型是面板堆石坝变形安全监控的主要方式之一。由于面板堆石坝变形的影响因素复杂,预测模型涉及因子较多,导致常规建模方法存在精度低、计算复杂且难以量化模型不确定性的问题。为此,提出一种基于Copula贝叶斯模... 基于实测数据建立预测模型是面板堆石坝变形安全监控的主要方式之一。由于面板堆石坝变形的影响因素复杂,预测模型涉及因子较多,导致常规建模方法存在精度低、计算复杂且难以量化模型不确定性的问题。为此,提出一种基于Copula贝叶斯模型平均的面板堆石坝变形预测模型构建方法。该方法利用Copula函数刻画测点变形与影响因子之间的联合分布,以替代贝叶斯模型平均中的均匀分布假设,并结合差分演化马尔科夫链蒙特卡洛算法对贝叶斯模型平均的计算体系进行优化。将该方法应用于公伯峡面板堆石坝的变形监测,分析结果表明:该方法能有效考虑模型不确定性,通过因子权重的合理分配为变形溯源提供理论依据,其预测精度优于逐步回归等传统模型,较传统贝叶斯模型平均方法也有提升。 展开更多
关键词 面板堆石坝 变形预测 COPULA理论 贝叶斯模型平均
在线阅读 下载PDF
创新价值链视角下建筑业上市公司技术创新效率研究——基于超效率网络SBM模型和BMA方法的实证分析
3
作者 程敏 易小凤 王方亮 《运筹与管理》 北大核心 2025年第5期156-163,共8页
为了解建筑业上市公司技术创新效率及其影响因素,基于创新价值链视角,将超效率网络SBM模型和DEA窗口分析法相结合对2016-2020年我国48家建筑业上市公司的技术创新效率进行测度,采用贝叶斯模型平均方法分析其影响因素。研究结果表明:(1)... 为了解建筑业上市公司技术创新效率及其影响因素,基于创新价值链视角,将超效率网络SBM模型和DEA窗口分析法相结合对2016-2020年我国48家建筑业上市公司的技术创新效率进行测度,采用贝叶斯模型平均方法分析其影响因素。研究结果表明:(1)研究期内各年48家企业技术创新效率均值介于0.50~0.54之间,技术创新效率有待提升;(2)根据技术研发效率和成果转化效率将样本企业分为四类,8家企业属于高效集约型、12家企业属于低研发高转化型、9家企业为高研发低转化型、19家企业为粗放低效型;(3)成立年限、成长能力和盈利能力对建筑业上市公司技术创新效率有显著的正向影响,企业规模、研发财力资源投入强度、政府扶持以及研发人力资源投入强度对其有显著的负向影响。最后依据研究结果提出了效率改善的建议。 展开更多
关键词 创新价值链 技术创新效率 建筑业 超效率网络SBM模型 贝叶斯模型平均
在线阅读 下载PDF
Improving the accuracy of precipitation estimates in a typical inland arid area of China using a dynamic Bayesian model averaging approach
4
作者 XU Wenjie DING Jianli +2 位作者 BAO Qingling WANG Jinjie XU Kun 《Journal of Arid Land》 SCIE CSCD 2024年第3期331-354,共24页
Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating a... Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions. 展开更多
关键词 precipitation estimates satellite-based and reanalysis precipitation dynamic bayesian model averaging streamflow simulation Ebinur Lake Basin XINJIANG
在线阅读 下载PDF
稻米品质对气候响应的区域分异机制与BMA预测模型研究
5
作者 吴伟鑫 张文婧 +3 位作者 杨军 刘丹 张方亮 田俊 《气象与减灾研究》 2025年第2期107-117,共11页
为解析稻米品质对气候的响应机制,基于2017-2019年中国三大稻区(南方双季稻区、南方一季中稻区、北方一季稻区)的跨区联网试验数据和气象观测资料,构建了基于贝叶斯模型平均(BMA)集成的稻米气候品质预测模型。结果表明:BMA集成显著提升... 为解析稻米品质对气候的响应机制,基于2017-2019年中国三大稻区(南方双季稻区、南方一季中稻区、北方一季稻区)的跨区联网试验数据和气象观测资料,构建了基于贝叶斯模型平均(BMA)集成的稻米气候品质预测模型。结果表明:BMA集成显著提升了稻米品质预测精度和准确性,特别是在克服南方一季中稻区单模型预测不稳定性方面效果突出。气候驱动稻米品质的机制存在显著区域分异,整精米率主控因子在南方双季稻区为齐穗至成熟期降水量,南方一季中稻区为齐穗至成熟期平均气温,北方一季稻区为播种至齐穗期累计降水量;垩白粒率的主要影响因素在南方早稻区为播种至齐穗期日最高气温大于30℃的累计值,南方晚稻区为齐穗后最大连续干燥日数,南方一季中稻区为播种至齐穗期日最高气温大于35℃的累计值,北方一季稻区为齐穗后10-20 d平均气温;直链淀粉含量的驱动因素在南方早稻区为播种至齐穗期累计太阳辐射,南方晚稻区为齐穗后最大连续干燥日数,南方一季中稻区为齐穗至成熟期累计太阳辐射,北方一季稻区为播种至齐穗期平均日最低气温;不同稻区的蛋白质含量则主要受播种至齐穗期高温日数、齐穗至成熟期最大连续干燥日数和齐穗前积温影响。研究阐明了气候-稻米品质的非线性响应规律,为区域优质水稻适应性栽培提供了技术支撑。 展开更多
关键词 稻米品质 气候因子 响应机制 机器学习 贝叶斯模型平均(bma)
在线阅读 下载PDF
Response of Growing Season Gross Primary Production to El Nino in Different Phases of the Pacific Decadal Oscillation over Eastern China Based on Bayesian Model Averaging 被引量:4
6
作者 Yueyue LI Li DAN +5 位作者 Jing PENG Junbang WANG Fuqiang YANG Dongdong GAO Xiujing YANG Qiang YU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第9期1580-1595,共16页
Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the ... Gross primary production(GPP) plays a crucial part in the carbon cycle of terrestrial ecosystems.A set of validated monthly GPP data from 1957 to 2010 in 0.5°× 0.5° grids of China was weighted from the Multi-scale Terrestrial Model Intercomparison Project using Bayesian model averaging(BMA).The spatial anomalies of detrended BMA GPP during the growing seasons of typical El Nino years indicated that GPP response to El Nino varies with Pacific Decadal Oscillation(PDO) phases: when the PDO was in the cool phase,it was likely that GPP was greater in northern China(32°–38°N,111°–122°E) and less in the Yangtze River valley(28°–32°N,111°–122°E);in contrast,when PDO was in the warm phase,the GPP anomalies were usually reversed in these two regions.The consistent spatiotemporal pattern and high partial correlation revealed that rainfall dominated this phenomenon.The previously published findings on how El Nino during different phases of PDO affecting rainfall in eastern China make the statistical relationship between GPP and El Nino in this study theoretically credible.This paper not only introduces an effective way to use BMA in grids that have mixed plant function types,but also makes it possible to evaluate the carbon cycle in eastern China based on the prediction of El Nino and PDO. 展开更多
关键词 East China bayesian model averaging Gross primary production El Nino Pacific Decadal Oscillation Monsoon rainfall
在线阅读 下载PDF
Improving microwave brightness temperature predictions based on Bayesian model averaging ensemble approach 被引量:1
7
作者 Binghao JIA Zhenghui XIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第11期1501-1516,共16页
The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simu... The choices of the parameterizations for each component in a microwave emission model have significant effects on the quality of brightness temperature (Tb) sim- ulation. How to reduce the uncertainty in the Tb simulation is investigated by adopting a statistical post-processing procedure with the Bayesian model averaging (BMA) ensemble approach. The simulations by the community microwave emission model (CMEM) cou- pled with the community land model version 4.5 (CLM4.5) over China's Mainland are con- ducted by the 24 configurations from four vegetation opacity parameterizations (VOPs), three soil dielectric constant parameterizations (SDCPs), and two soil roughness param- eterizations (SRPs). Compared with the simple arithmetical averaging (SAA) method, the BMA reconstructions have a higher spatial correlation coefficient (larger than 0.99) than the C-band satellite observations of the advanced microwave scanning radiometer on the Earth observing system (AMSR-E) at the vertical polarization. Moreover, the BMA product performs the best among the ensemble members for all vegetation classes, with a mean root-mean-square difference (RMSD) of 4 K and a temporal correlation coefficient of 0.64. 展开更多
关键词 bayesian model averaging bma microwave brightness temperature com-munity microwave emission model (CMEM) community land model version 4.5 (CLM4.5)
在线阅读 下载PDF
Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging 被引量:3
8
作者 YANG Jing FANG Gonghuan +1 位作者 CHEN Yaning Philippe DE-MAEYER 《Journal of Arid Land》 SCIE CSCD 2017年第4期622-634,共13页
Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan ... Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21^(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease. 展开更多
关键词 climate change GCM ensemble bayesian model averaging Tianshan and northern Kunlun Mountains
在线阅读 下载PDF
Improving the simulation of terrestrial water storage anomalies over China using a Bayesian model averaging ensemble approach 被引量:1
9
作者 LIU Jian-Guo JIA Bing-Hao +1 位作者 XIE Zheng-Hui SHI Chun-Xiang 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第4期322-329,共8页
The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model ph... The ability to estimate terrestrial water storage(TWS)is essential for monitoring hydrological extremes(e.g.,droughts and floods)and predicting future changes in the hydrological cycle.However,inadequacies in model physics and parameters,as well as uncertainties in meteorological forcing data,commonly limit the ability of land surface models(LSMs)to accurately simulate TWS.In this study,the authors show how simulations of TWS anomalies(TWSAs)from multiple meteorological forcings and multiple LSMs can be combined in a Bayesian model averaging(BMA)ensemble approach to improve monitoring and predictions.Simulations using three forcing datasets and two LSMs were conducted over China's Mainland for the period 1979–2008.All the simulations showed good temporal correlations with satellite observations from the Gravity Recovery and Climate Experiment during 2004–08.The correlation coefficient ranged between 0.5 and 0.8 in the humid regions(e.g.,the Yangtze river basin,Huaihe basin,and Zhujiang basin),but was much lower in the arid regions(e.g.,the Heihe basin and Tarim river basin).The BMA ensemble approach performed better than all individual member simulations.It captured the spatial distribution and temporal variations of TWSAs over China's Mainland and the eight major river basins very well;plus,it showed the highest R value(>0.5)over most basins and the lowest root-mean-square error value(<40 mm)in all basins of China.The good performance of the BMA ensemble approach shows that it is a promising way to reproduce long-term,high-resolution spatial and temporal TWSA data. 展开更多
关键词 Terrestrial water storage anomalies multi-forcing and multi-model ensemble simulation bayesian model averaging spatiotemporal variation UNCERTAINTY
在线阅读 下载PDF
Effects of Bayesian Model Selection on Frequentist Performances: An Alternative Approach
10
作者 Georges Nguefack-Tsague Walter Zucchini 《Applied Mathematics》 2016年第10期1103-1115,共14页
It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selectio... It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selection estimator (PMSE) whose properties are hard to derive. Conditioning on data at hand (as it is usually the case), Bayesian model selection is free of this phenomenon. This paper is concerned with the properties of Bayesian estimator obtained after model selection when the frequentist (long run) performances of the resulted Bayesian estimator are of interest. The proposed method, using Bayesian decision theory, is based on the well known Bayesian model averaging (BMA)’s machinery;and outperforms PMSE and BMA. It is shown that if the unconditional model selection probability is equal to model prior, then the proposed approach reduces BMA. The method is illustrated using Bernoulli trials. 展开更多
关键词 model Selection Uncertainty model Uncertainty bayesian model Selection bayesian model Averaging bayesian Theory Frequentist Performance
在线阅读 下载PDF
Comparison between Different ESI Methods on Refractory Epilepsy Patients Shows a High Sensitivity for Bayesian Model Averaging
11
作者 Danilo Maziero Agustin Lage Castellanos +1 位作者 Carlos Ernesto Garrido Salmon Tonicarlo Rodrigues Velasco 《Journal of Biomedical Science and Engineering》 2014年第9期662-674,共13页
Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showin... Electrical Source Imaging (ESI) is a non-invasive technique of reconstructing brain activities using EEG data. This technique has been applied to evaluate epilepsy patients being evaluated for epilepsy surgery, showing encouraging results for mapping interictal epileptiform discharges (IED). However, ESI is underused in planning epilepsy surgery. This is basically due to the wide availability of methods for solving the electromagnetism inverse problem (e-IP) associated to few studies using EEG setups similar to those most commonly used in clinical setting. In this study, we applied six different methods of solving the e-IP based on IEDs of 20 focal epilepsy patients that presented abnormalities in their MRI. We compared the ESI maps obtained by each method with the location of the abnormality, calculating the Euclidian distances from the center of the lesion to the closest border of the method solution (CL-BM) and also to the solution’s maxima (CL-MM). We also applied a score system in order to allow us to evaluate the sensitivity of each method for temporal and extra temporal patients. In our patients, the Bayesian Model Averaging method had a sensitivity of 86% and the shortest CL-MM. This method also had more restricted solutions that were more representative of epileptogenic activities than those obtained by the other methods. 展开更多
关键词 EEG EPILEPSY Electrical SOURCE Imaging bayesian model AVERAGING
暂未订购
A Mixture-Based Bayesian Model Averaging Method
12
作者 Georges Nguefack-Tsague Walter Zucchini 《Open Journal of Statistics》 2016年第2期220-228,共9页
Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator ar... Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator are hard to derive. This paper proposes a mixture of priors and sampling distributions as a basic of a Bayes estimator. The frequentist properties of the new Bayes estimator are automatically derived from Bayesian decision theory. It is shown that if all competing models have the same parametric form, the new Bayes estimator reduces to BMA estimator. The method is applied to the daily exchange rate Euro to US Dollar. 展开更多
关键词 MIXTURE bayesian model Selection bayesian model Averaging bayesian Theory Frequentist Performance
在线阅读 下载PDF
CMIP6全球气候模式对中国气温模拟的BMA方法评估
13
作者 邓鹏 王国复 王国杰 《气象科学》 2024年第4期775-782,共8页
选用CMIP6中13种全球气候模式数据,以CN05.1数据作为实测资料,对1961—2014年中国气温进行模拟及模式能力评估。采用BMA、泰勒图评估模式排名,并将BMA与算术平均(AVG)集合结果进行比较。结果表明,泰勒图评分和BMA权重在最优和最劣模式... 选用CMIP6中13种全球气候模式数据,以CN05.1数据作为实测资料,对1961—2014年中国气温进行模拟及模式能力评估。采用BMA、泰勒图评估模式排名,并将BMA与算术平均(AVG)集合结果进行比较。结果表明,泰勒图评分和BMA权重在最优和最劣模式评价中基本一致,模拟效果最好的两种模式为ACCESS-ESM1-5、INM-CM5-0。BMA集合模拟结果优于AVG方法,CN05.1、BMA、AVG方法得到的中国多年平均气温分别为6.18、5.95和4.92℃,BMA方法通过权重调节使整体系统误差最小。BMA和AVG方法集合的CMIP6气候模式在对中国气温模拟的空间分布形式上与实测差距不大,而局部地域分布情况有所区别。BMA方法不仅可以对CMIP6模式进行有效评估,并且其集合模拟结果的时间及空间变化情况都与实测值更接近。 展开更多
关键词 CMIP6 气候模式 中国气温 贝叶斯模型平均 集合模拟
在线阅读 下载PDF
基于GBD数据库分析与预测中国鼻咽癌疾病负担 被引量:1
14
作者 宋业勋 刘霞静 +1 位作者 张永全 李和清 《中南大学学报(医学版)》 北大核心 2025年第4期675-683,共9页
目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流... 目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流行病学依据。方法:选取年龄标化发病率、病死率、伤残调整寿命年(disability adjusted life year,DALY)率作为疾病负担的评价指标,按照不同年龄、性别、社会人口学指数及其相关危险因素进行分层分析,同时应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和贝叶斯年龄-时期-队列分析模型(Bayesian age-period-cohort,BAPC)将年龄标化发病率预测至2050年。结果:2021年中国鼻咽癌年龄标化发病率、病死率、DALY率分别为3.4/10万、1.5/10万、48.7/10万,均高于同期全球水平。在所有年龄段,中国男性年龄标化发病率、病死率、DALY率均高于女性。中国鼻咽癌的疾病负担从1990至2021年随着社会人口学指数(socio-demographic index,SDI)的增高逐渐降低。中国归因于饮酒、吸烟、职业甲醛暴露的鼻咽癌疾病负担占比均高于全球水平,且在男性中尤为显著。模型预测中国及全球男性、女性、全人群的年龄标化发病率均提示从2022至2050年呈上升趋势。结论:既往30年中国鼻咽癌的疾病负担随着SDI的升高逐渐降低,但仍高于同期全球水平。同时,中国鼻咽癌的年龄标化发病率在未来30年呈上升趋势。中国仍需进一步增加医疗资源的投入以应对鼻咽癌的防控与诊疗,尤其针对高风险男性群体。 展开更多
关键词 鼻咽癌 疾病负担 社会人口学指数 贝叶斯年龄-时期-队列分析模型 差分自回归移动平均模型
暂未订购
Stock price index analysis of four OPEC members:a Bayesian approach
15
作者 Saman Hatamerad Hossain Asgharpur +1 位作者 Bahram Adrangi Jafar Haghighat 《Financial Innovation》 2024年第1期1107-1135,共29页
This study examines the relationship between macroeconomic variables and stock price indices of four prominent OPEC oil-exporting members.Bayesian model averaging(BMA)and regularized linear regression(RLR)are employed... This study examines the relationship between macroeconomic variables and stock price indices of four prominent OPEC oil-exporting members.Bayesian model averaging(BMA)and regularized linear regression(RLR)are employed to address uncertainties arising from different estimation models and variable selection.Jointness is utilized to determine the nature of relationships among variable pairs.The case study spans macroeconomic variables and stock prices from 1996 to 2018.BMA findings reveal a strong positive association between stock price indices and both consumer price index(CPI)and broad money growth in each analyzed OPEC country.Additionally,the study suggests a weak negative correlation between OPEC oil prices and the stock price index.RLR results align with BMA analysis,offering insights valuable for policymakers and international wealth managers. 展开更多
关键词 EQUITIES MACROECONOMICS bayesian model averaging bayesian estimation Regularized linear regression OPEC countries
在线阅读 下载PDF
基于贝叶斯模型平均与机器学习的中国省域碳达峰预测 被引量:1
16
作者 桂河清 杜鑫 《环境科学》 北大核心 2025年第6期3461-3472,共12页
采用2005~2021年的面板数据测算了中国30个省域化石能源消费和净电力消费的碳排放,基于贝叶斯模型平均法筛选碳排放关键影响因素,运用机器学习模型预测各省域碳达峰实施方案是否能确保其2030年前实现碳达峰.结果表明,非化石能源消费和... 采用2005~2021年的面板数据测算了中国30个省域化石能源消费和净电力消费的碳排放,基于贝叶斯模型平均法筛选碳排放关键影响因素,运用机器学习模型预测各省域碳达峰实施方案是否能确保其2030年前实现碳达峰.结果表明,非化石能源消费和天然气消费分别占能源消费总量的比例、第一和第三产业比例以及私人汽车拥有量5个变量是省域碳排放的关键影响因素;装袋法、随机森林、支持向量机和BP神经网络这4种机器学习模型中,BP神经网络预测中国各省域碳排放的效果最佳;如果产业结构调整和重点领域能源消费延续2017~2021年的发展趋势,各省域碳达峰实施方案提出的能源消费结构优化目标可确保北京等21个省域2030年前实现碳达峰,内蒙古等9个省域则需进一步优化能源消费结构、加强产业结构调整以及控制重点领域能源消费才能在2030年前实现碳达峰. 展开更多
关键词 碳达峰 贝叶斯模型平均(bma) 机器学习 碳排放核算 预测
原文传递
基于深度学习贝叶斯模型平均代理的油藏自动历史拟合研究
17
作者 张凯 陈旭 +3 位作者 刘丕养 张金鼎 张黎明 姚军 《钻采工艺》 北大核心 2025年第1期147-156,共10页
油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能... 油藏自动历史拟合过程中,需要频繁调用数值模拟器进行正向计算,导致计算时间长、资源消耗大。基于深度学习的油藏数值模拟代理模型提供了一种快速计算油水井生产动态的替代方案。然而,单一神经网络产量预测代理模型在特征提取和学习能力方面存在局限性。基于空间特征构建的代理模型侧重于学习油藏渗流的空间特性,但忽视了时间维度;基于时空特征构建的模型虽然擅长捕捉时间序列特征,却在空间特征学习方面不足。为此,文章提出了一种基于深度学习的贝叶斯模型平均代理方法,利用贝叶斯模型平均方法对两种深度学习代理模型进行集成,结合二者优势,增强代理模型对油藏特征的多维度学习能力,从而提高预测精度。该方法进一步结合多重数据同化集合平滑器,应用于实际油藏历史拟合中。实验结果表明,基于深度学习贝叶斯模型平均代理的历史拟合方法能够在保证高效计算的同时,准确拟合油藏实际生产动态,为快速、精确的历史拟合提供了一种创新解决方案。 展开更多
关键词 深度学习 历史拟合 产量预测 贝叶斯模型平均方法 集成代理模型
在线阅读 下载PDF
多源遥感数据尺度转换的夏玉米蒸散发融合模型研究
18
作者 胡笑涛 刘畅 +3 位作者 王亚昆 李高良 代秦 陈洪 《农业机械学报》 北大核心 2025年第8期21-31,共11页
蒸散发(Evapotranspiration,ET)是作物需水量的核心组分,也是区域水资源优化配置的关键依据。本文以陕西关中宝鸡峡灌区夏玉米为研究对象,采用BP神经网络(Back propagation neural network,BPNN)、支持向量机(Support vector machine,S... 蒸散发(Evapotranspiration,ET)是作物需水量的核心组分,也是区域水资源优化配置的关键依据。本文以陕西关中宝鸡峡灌区夏玉米为研究对象,采用BP神经网络(Back propagation neural network,BPNN)、支持向量机(Support vector machine,SVM)、极限学习机(Extreme learning machine,ELM)和极致梯度提升树(eXtreme gradient boosting,XGBoost)4种机器学习算法构建无人机-卫星多源遥感数据协同校正模型,并以最优算法建立的模型校正卫星多光谱数据,实现无人机和卫星数据的尺度转换。利用校正后高精度卫星数据反演夏玉米叶面积指数(Leaf area index,LAI)与株高(Crop height,hc)为蒸散发模型提供数据输入。分别采用双作物系数法、METRIC模型及Penman-Monteith(P-M)冠层阻力模型进行夏玉米蒸散发估算,引入贝叶斯模型平均(Bayesian model averaging,BMA)实现不同生育阶段各方法/模型权重的动态分配,最终得到玉米拔节-完熟期性能稳健的蒸散发BMA融合模型。结果表明:XGBoost算法在夏玉米拔节-完熟期的B/G/R/NIR波段建模精度均为最高,四波段建模结果决定系数(Coefficient of determination,R^(2))较算法ELM高出8.43%、8.67%、6.79%和10.41%;校正后的卫星多光谱数据LAI与hc反演结果R^(2)较原始卫星数据分别平均提高97%和67.5%;BMA融合模型在夏玉米拔节-抽雄期和蜡熟-完熟期较单一最优方法/模型(METRIC模型)均方根误差(Root mean squared error,RMSE)降低39.3%~58.5%。本研究利用“协同校正-动态融合”显著提升了蒸散发遥感监测精度,可为水资源精细化管理提供理论支撑。 展开更多
关键词 蒸散发 无人机 卫星遥感 尺度转换 协同校正模型 贝叶斯模型平均
在线阅读 下载PDF
2005-2023年湖北省武汉市急性乙型肝炎流行特征及发病预测分析 被引量:3
19
作者 夏爽 汪鹏 +2 位作者 吴利沙 宋瑶 蔡黎 《疾病监测》 北大核心 2025年第3期365-370,共6页
目的 分析2005—2023年湖北省武汉市急性乙型肝炎(乙肝)的流行特征,预测急性乙肝发病趋势,为急性乙肝防控策略提供参考依据。方法 采用描述性流行病学方法分析武汉市急性乙肝流行特征,以2005—2021年数据作为观测值建立自回归移动平均(A... 目的 分析2005—2023年湖北省武汉市急性乙型肝炎(乙肝)的流行特征,预测急性乙肝发病趋势,为急性乙肝防控策略提供参考依据。方法 采用描述性流行病学方法分析武汉市急性乙肝流行特征,以2005—2021年数据作为观测值建立自回归移动平均(ARIMA)模型和贝叶斯结构时间序列(BSTS)模型,2022年和2023年数据作为测试值比较两种模型预测的准确性。结果 2005—2023年武汉市共报告急性乙肝3 991例,年均报告发病率为2.10/10万;男性发病率高于女性;无明显季节性发病高峰;各区年均发病率为1.21/10万~3.37/10万。病例职业主要为家务及待业(782例,19.59%)、农民(697例,17.46%)。2005—2010年各年龄组发病率均高于平均水平,20~<25岁组最高,达9.01/10万,2011—2016年各年龄组发病率略低于平均水平,2017—2023年各年龄组发病率显著低于平均水平,0~<5岁组最低,为0.03/10万,病例主要集中在25~<65岁组(75.04%)。BSTS模型、ARIMA模型预测的均方根误差分别为3.67、8.86,平均绝对百分比误差分别为49.63%、75.17%。基于BSTS模型预测的武汉市2024年1—6月急性乙肝发病数与实际值比较,预测的均方根误差为3.32,平均绝对百分比误差为18.61%。结论 武汉市急性乙肝发病率总体呈下降趋势,各年龄组发病率均维持较低水平,尤其是0~<5岁组儿童,需加强重点人群的急性乙肝防控工作,建立的BSTS模型在预测急性乙肝的发病趋势方面优于ARIMA模型。 展开更多
关键词 急性乙型肝炎 流行特征 预测 自回归移动平均模型 贝叶斯结构时间序列模型
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部