Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,ha...Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,have enabled automated fire detection in images and videos.Several deep learning models have been developed for object detection,including applications in fire and smoke detection.This study focuses on optimizing the training hyperparameters of YOLOv8 andYOLOv10models usingBayesianTuning(BT).Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance.Specifically,the proposed approach improves the mean average precision at an Intersection over Union(IoU)threshold of 0.5(mAP50)of the YOLOv8s,YOLOv10s,YOLOv8l,and YOLOv10lmodels by 0.26,0.21,0.84,and 0.63,respectively,compared tomodels trainedwith the default hyperparameters.The performance gains are more pronounced in larger models,YOLOv8l and YOLOv10l,than in their smaller counterparts,YOLOv8s and YOLOv10s.Furthermore,YOLOv8 models consistently outperform YOLOv10,with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l when trained with BT.These results establish YOLOv8 as the preferred model for fire detection applications where detection performance is prioritized.展开更多
Edge computing(EC)combined with the Internet of Things(IoT)provides a scalable and efficient solution for smart homes.Therapid proliferation of IoT devices poses real-time data processing and security challenges.EC ha...Edge computing(EC)combined with the Internet of Things(IoT)provides a scalable and efficient solution for smart homes.Therapid proliferation of IoT devices poses real-time data processing and security challenges.EC has become a transformative paradigm for addressing these challenges,particularly in intrusion detection and anomaly mitigation.The widespread connectivity of IoT edge networks has exposed them to various security threats,necessitating robust strategies to detect malicious activities.This research presents a privacy-preserving federated anomaly detection framework combined with Bayesian game theory(BGT)and double deep Q-learning(DDQL).The proposed framework integrates BGT to model attacker and defender interactions for dynamic threat level adaptation and resource availability.It also models a strategic layout between attackers and defenders that takes into account uncertainty.DDQL is incorporated to optimize decision-making and aids in learning optimal defense policies at the edge,thereby ensuring policy and decision optimization.Federated learning(FL)enables decentralized and unshared anomaly detection for sensitive data between devices.Data collection has been performed from various sensors in a real-time EC-IoT network to identify irregularities that occurred due to different attacks.The results reveal that the proposed model achieves high detection accuracy of up to 98%while maintaining low resource consumption.This study demonstrates the synergy between game theory and FL to strengthen anomaly detection in EC-IoT networks.展开更多
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t...Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.展开更多
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d...For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.展开更多
In this paper, we propose a Packet Cache-Forward(PCF) method based on improved Bayesian outlier detection to eliminate out-of-order packets caused by transmission path drastically degradation during handover events in...In this paper, we propose a Packet Cache-Forward(PCF) method based on improved Bayesian outlier detection to eliminate out-of-order packets caused by transmission path drastically degradation during handover events in the moving satellite networks, for improving the performance of TCP. The proposed method uses an access node satellite to cache all received packets in a short time when handover occurs and forward them out in order. To calculate the cache time accurately, this paper establishes the Bayesian based mixture model for detecting delay outliers of the entire handover scheme. In view of the outliers' misjudgment, an updated classification threshold and the sliding window has been suggested to correct category collections and model parameters for the purpose of quickly identifying exact compensation delay in the varied network load statuses. Simulation shows that, comparing to average processing delay detection method, the average accuracy rate was scaled up by about 4.0%, and there is about 5.5% cut in error rate in the meantime. It also behaves well even though testing with big dataset. Benefiting from the advantage of the proposed scheme in terms of performance, comparing to conventional independent handover and network controlled synchronizedhandover in simulated LEO satellite networks, the proposed independent handover with PCF eliminates packet out-of-order issue to get better improvement on congestion window. Eventually the average delay decreases more than 70% and TCP performance has improved more than 300%.展开更多
Various uncertainties arising during acquisition process of geoscience data may result in anomalous data instances(i.e.,outliers)that do not conform with the expected pattern of regular data instances.With sparse mult...Various uncertainties arising during acquisition process of geoscience data may result in anomalous data instances(i.e.,outliers)that do not conform with the expected pattern of regular data instances.With sparse multivariate data obtained from geotechnical site investigation,it is impossible to identify outliers with certainty due to the distortion of statistics of geotechnical parameters caused by outliers and their associated statistical uncertainty resulted from data sparsity.This paper develops a probabilistic outlier detection method for sparse multivariate data obtained from geotechnical site investigation.The proposed approach quantifies the outlying probability of each data instance based on Mahalanobis distance and determines outliers as those data instances with outlying probabilities greater than 0.5.It tackles the distortion issue of statistics estimated from the dataset with outliers by a re-sampling technique and accounts,rationally,for the statistical uncertainty by Bayesian machine learning.Moreover,the proposed approach also suggests an exclusive method to determine outlying components of each outlier.The proposed approach is illustrated and verified using simulated and real-life dataset.It showed that the proposed approach properly identifies outliers among sparse multivariate data and their corresponding outlying components in a probabilistic manner.It can significantly reduce the masking effect(i.e.,missing some actual outliers due to the distortion of statistics by the outliers and statistical uncertainty).It also found that outliers among sparse multivariate data instances affect significantly the construction of multivariate distribution of geotechnical parameters for uncertainty quantification.This emphasizes the necessity of data cleaning process(e.g.,outlier detection)for uncertainty quantification based on geoscience data.展开更多
A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers...A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers of large-scale intrusion detection systems. In order to improve the efficiency and veracity of intrusion analysis, the intrusion intensity values are picked from alert data and Bayesian dynamic forecast method is used to detect anomaly. The experiments show that the new method is effective on detecting macroscopical anomaly in large-scale intrusion detection systems.展开更多
A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of para...A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of parameter values was quantified by probability density function and updated by Bayesian theory. Values of the parameters were estimated based on Fisher’s law. The amount of leaks was estimated by back propagation neural network. Based on flow characteristics in water distribution systems, the location of leaks can be estimated. The effectiveness of the proposed method was illustrated by simulated leak data of node pressure head and flow rate of pipelines in a test pipe network, and the leaks were spotted accurately and renovated on time.展开更多
A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underly...A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes which assume remove the stringent condition of bounded total variation of the regression function and need only second moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to approximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate samples sizes.展开更多
In order to apply speech recognition systems to actual circumstances such as inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-wri...In order to apply speech recognition systems to actual circumstances such as inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-writing is difficult, some countermeasure methods for surrounding noise are indispensable. In this study, a signal detection method to remove the noise for actual speech signals is proposed by using Bayesian estimation with the aid of bone-conducted speech. More specifically, by introducing Bayes’ theorem based on the observation of air-conducted speech contaminated by surrounding background noise, a new type of algorithm for noise removal is theoretically derived. In the proposed speech detection method, bone-conducted speech is utilized in order to obtain precise estimation for speech signals. The effectiveness of the proposed method is experimentally confirmed by applying it to air- and bone-conducted speeches measured in real environment under the existence of surrounding background noise.展开更多
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,...A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.展开更多
Wireless ad ho network is becoming a new research fronter, in which security is an important issue. Usually some nodes act maliciously and they are able to do different kinds of Denial of Service (Dos). Because of the...Wireless ad ho network is becoming a new research fronter, in which security is an important issue. Usually some nodes act maliciously and they are able to do different kinds of Denial of Service (Dos). Because of the limited resource, intrusion detection system (IDS) runs all the time to detect intrusion of the attacker which is a costly overhead. In our model, we use game theory to model the interactions between the intrusion detection system and the attacker, and a realistic model is given by using Bayesian game. We solve the game by finding the Bayesian Nash equilibrium. The results of our analysis show that the IDS could work intermittently without compromising on its effectiveness. At the end of this paper, we provide an experiment to verify the rationality and effectiveness of the proposed model.展开更多
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ...To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.展开更多
Skin detection has been considered as the principal step in many machine vision systems,such as face detection and adult image filtering.Among all these techniques,skin color is the most welcome cue because of its rob...Skin detection has been considered as the principal step in many machine vision systems,such as face detection and adult image filtering.Among all these techniques,skin color is the most welcome cue because of its robustness.However,traditional color-based approaches poorly perform on the classification of skin-like pixels.In this paper,we propose a new skin detection method based on the cascaded adaptive boosting(AdaBoost) classifier,which consists of minimum-risk based Bayesian classifier and models in different color spaces such as HSV(hue-saturation-value),YCgCb(brightness-green-blue) and YCgCr(brightness-green-red).In addition,we have constructed our own database that is larger and more suitable for training and testing on filtering adult images than the Compaq data set.Experimental results show that our method behaves better than the state-ofthe-art pixel-based skin detection techniques on processing images with skin-like background.展开更多
Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time s...Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time series of process variables may have an important indication about the process operation.For example,in a batch process,the change points can correspond to the operations and phases defined by the batch recipe.Hence identifying change points can assist labelling the time series data.Various unsupervised algorithms have been developed for change point detection,including the optimisation approachwhich minimises a cost functionwith certain penalties to search for the change points.The Bayesian approach is another,which uses Bayesian statistics to calculate the posterior probability of a specific sample being a change point.The paper investigates how the two approaches for change point detection can be applied to process data analytics.In addition,a new type of cost function using Tikhonov regularisation is proposed for the optimisation approach to reduce irrelevant change points caused by randomness in the data.The novelty lies in using regularisation-based cost functions to handle ill-posed problems of noisy data.The results demonstrate that change point detection is useful for process data analytics because change points can produce data segments corresponding to different operating modes or varying conditions,which will be useful for other machine learning tasks.展开更多
Features of oil spills and look-alikes in polarimetric synthetic aperture radar(SAR)images always play an important role in oil spill detection.Many oil spill detection algorithms have been implemented based on these ...Features of oil spills and look-alikes in polarimetric synthetic aperture radar(SAR)images always play an important role in oil spill detection.Many oil spill detection algorithms have been implemented based on these features.Although environmental factors such as wind speed are important to distinguish oil spills and look-alikes,some oil spill detection algorithms do not consider the environmental factors.To distinguish oil spills and look-alikes more accurately based on environmental factors and image features,a new oil spill detection algorithm based on Dempster-Shafer evidence theory was proposed.The process of oil spill detection taking account of environmental factors was modeled using the subjective Bayesian model.The Faster-region convolutional neural networks(RCNN)model was used for oil spill detection based on the convolution features.The detection results of the two models were fused at decision level using Dempster-Shafer evidence theory.The establishment and test of the proposed algorithm were completed based on our oil spill and look-alike sample database that contains 1798 image samples and environmental information records related to the image samples.The analysis and evaluation of the proposed algorithm shows a good ability to detect oil spills at a higher detection rate,with an identifi cation rate greater than 75%and a false alarm rate lower than 19%from experiments.A total of 12 oil spill SAR images were collected for the validation and evaluation of the proposed algorithm.The evaluation result shows that the proposed algorithm has a good performance on detecting oil spills with an overall detection rate greater than 70%.展开更多
A semantic unit based event detection scheme in soccer videos is proposed in this paper.The scheme can be characterized as a three-layer framework. At the lowest layer, low-level featuresincluding color, texture, edge...A semantic unit based event detection scheme in soccer videos is proposed in this paper.The scheme can be characterized as a three-layer framework. At the lowest layer, low-level featuresincluding color, texture, edge, shape, and motion are extracted. High-level semantic events aredefined at the highest layer. In order to connect low-level features and high-level semantics, wedesign and define some semantic units at the intermediate layer. A semantic unit is composed of asequence of consecutives frames with the same cue that is deduced from low-level features. Based onsemantic units, a Bayesian network is used to reason the probabilities of events. The experiments forshoot and card event detection in soccer videos show that the proposed method has an encouragingperformance.展开更多
There exists model uncertainty of probability of detection for inspecting ship structures with nondestructive inspection techniques. Based on a comparison of several existing probability of detection (POD) models, a n...There exists model uncertainty of probability of detection for inspecting ship structures with nondestructive inspection techniques. Based on a comparison of several existing probability of detection (POD) models, a new probability of detection model is proposed for the updating of crack size distribution. Furthermore, the theoretical derivation shows that most existing probability of detection models are special cases of the new probability of detection model. The least square method is adopted for determining the values of parameters in the new POD model. This new model is also compared with other existing probability of detection models. The results indicate that the new probability of detection model can fit the inspection data better. This new probability of detection model is then applied to the analysis of the problem of crack size updating for offshore structures. The Bayesian updating method is used to analyze the effect of probability of detection models on the posterior distribution of a crack size. The results show that different probabilities of detection models generate different posterior distributions of a crack size for offshore structures.展开更多
In the engineering field,switching systems have been extensively studied,where sudden changes of parameter value and structural form have a significant impact on the operational performance of the system.Therefore,it ...In the engineering field,switching systems have been extensively studied,where sudden changes of parameter value and structural form have a significant impact on the operational performance of the system.Therefore,it is important to predict the behavior of the switching system,which includes the accurate detection of mutation points and rapid reidentification of the model.However,few efforts have been contributed to accurately locating the mutation points.In this paper,we propose a new measure of mutation detection—the threshold-based switching index by analogy with the Lyapunov exponent.We give the algorithm for selecting the optimal threshold,which greatly reduces the additional data collection and the relative error of mutation detection.In the system identification part,considering the small data amount available and noise in the data,the abrupt sparse Bayesian regression(abrupt-SBR)method is proposed.This method captures the model changes by updating the previously identified model,which requires less data and is more robust to noise than identifying the new model from scratch.With two representative dynamical systems,we illustrate the application and effectiveness of the proposed methods.Our research contributes to the accurate prediction and possible control of switching system behavior.展开更多
When considering Intrusion Detection and the Insider Threat, most researchers tend to focus on the network architecture rather than the database which is the primary target of data theft. It is understood that the net...When considering Intrusion Detection and the Insider Threat, most researchers tend to focus on the network architecture rather than the database which is the primary target of data theft. It is understood that the network level is adequate for many intrusions where entry into the system is being sought however it is grossly inadequate when considering the database and the authorized insider. Recent writings suggest that there have been many attempts to address the insider threat phenomena in regards to database technologies by the utilization of detection methodologies, policy management systems and behavior analysis methods however, there appears to be a lacking in the development of adequate solutions that will achieve the level of detection that is required. While it is true that Authorization is the cornerstone to the security of the database implementation, authorization alone is not enough to prevent the authorized entity from initiating malicious activities in regards to the data stored within the database. Behavior of the authorized entity must also be considered along with current data access control policies. Each of the previously mentioned approaches to intrusion detection at the database level has been considered individually, however, there has been limited research in producing a multileveled approach to achieve a robust solution. The research presented outlines the development of a detection framework by introducing a process that is to be implemented in conjunction with information requests. By utilizing this approach, an effective and robust methodology has been achieved that can be used to determine the probability of an intrusion by the authorized entity, which ultimately address the insider threat phenomena at its most basic level.展开更多
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2024-RS-2022-00156354)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)supported by the Technology Development Program(RS-2023-00264489)funded by the Ministry of SMEs and Startups(MSS,Republic of Korea).
文摘Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,have enabled automated fire detection in images and videos.Several deep learning models have been developed for object detection,including applications in fire and smoke detection.This study focuses on optimizing the training hyperparameters of YOLOv8 andYOLOv10models usingBayesianTuning(BT).Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance.Specifically,the proposed approach improves the mean average precision at an Intersection over Union(IoU)threshold of 0.5(mAP50)of the YOLOv8s,YOLOv10s,YOLOv8l,and YOLOv10lmodels by 0.26,0.21,0.84,and 0.63,respectively,compared tomodels trainedwith the default hyperparameters.The performance gains are more pronounced in larger models,YOLOv8l and YOLOv10l,than in their smaller counterparts,YOLOv8s and YOLOv10s.Furthermore,YOLOv8 models consistently outperform YOLOv10,with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l when trained with BT.These results establish YOLOv8 as the preferred model for fire detection applications where detection performance is prioritized.
基金The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through the Large Group Project under grant number(RGP2/337/46)The research team thanks the Deanship of Graduate Studies and Scientific Research at Najran University for supporting the research project through the Nama’a program,with the project code NU/GP/SERC/13/352-4.
文摘Edge computing(EC)combined with the Internet of Things(IoT)provides a scalable and efficient solution for smart homes.Therapid proliferation of IoT devices poses real-time data processing and security challenges.EC has become a transformative paradigm for addressing these challenges,particularly in intrusion detection and anomaly mitigation.The widespread connectivity of IoT edge networks has exposed them to various security threats,necessitating robust strategies to detect malicious activities.This research presents a privacy-preserving federated anomaly detection framework combined with Bayesian game theory(BGT)and double deep Q-learning(DDQL).The proposed framework integrates BGT to model attacker and defender interactions for dynamic threat level adaptation and resource availability.It also models a strategic layout between attackers and defenders that takes into account uncertainty.DDQL is incorporated to optimize decision-making and aids in learning optimal defense policies at the edge,thereby ensuring policy and decision optimization.Federated learning(FL)enables decentralized and unshared anomaly detection for sensitive data between devices.Data collection has been performed from various sensors in a real-time EC-IoT network to identify irregularities that occurred due to different attacks.The results reveal that the proposed model achieves high detection accuracy of up to 98%while maintaining low resource consumption.This study demonstrates the synergy between game theory and FL to strengthen anomaly detection in EC-IoT networks.
基金supported by the National Natural Science Foundation of China(62276055).
文摘Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task.
基金supported by the National Natural Science Foundation of China(61202473)the Fundamental Research Funds for Central Universities(JUSRP111A49)+1 种基金"111 Project"(B12018)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements.
基金supported by National High Technology Research and Development Program of China(863 Program,No.2014AA7011005)National Nature Science Foundation of China(No.91438120)
文摘In this paper, we propose a Packet Cache-Forward(PCF) method based on improved Bayesian outlier detection to eliminate out-of-order packets caused by transmission path drastically degradation during handover events in the moving satellite networks, for improving the performance of TCP. The proposed method uses an access node satellite to cache all received packets in a short time when handover occurs and forward them out in order. To calculate the cache time accurately, this paper establishes the Bayesian based mixture model for detecting delay outliers of the entire handover scheme. In view of the outliers' misjudgment, an updated classification threshold and the sliding window has been suggested to correct category collections and model parameters for the purpose of quickly identifying exact compensation delay in the varied network load statuses. Simulation shows that, comparing to average processing delay detection method, the average accuracy rate was scaled up by about 4.0%, and there is about 5.5% cut in error rate in the meantime. It also behaves well even though testing with big dataset. Benefiting from the advantage of the proposed scheme in terms of performance, comparing to conventional independent handover and network controlled synchronizedhandover in simulated LEO satellite networks, the proposed independent handover with PCF eliminates packet out-of-order issue to get better improvement on congestion window. Eventually the average delay decreases more than 70% and TCP performance has improved more than 300%.
基金supported by the National Key R&D Program of China(Project No.2016YFC0800200)the NRF-NSFC 3rd Joint Research Grant(Earth Science)(Project No.41861144022)+2 种基金the National Natural Science Foundation of China(Project Nos.51679174,and 51779189)the Shenzhen Key Technology R&D Program(Project No.20170324)The financial support is grateful acknowledged。
文摘Various uncertainties arising during acquisition process of geoscience data may result in anomalous data instances(i.e.,outliers)that do not conform with the expected pattern of regular data instances.With sparse multivariate data obtained from geotechnical site investigation,it is impossible to identify outliers with certainty due to the distortion of statistics of geotechnical parameters caused by outliers and their associated statistical uncertainty resulted from data sparsity.This paper develops a probabilistic outlier detection method for sparse multivariate data obtained from geotechnical site investigation.The proposed approach quantifies the outlying probability of each data instance based on Mahalanobis distance and determines outliers as those data instances with outlying probabilities greater than 0.5.It tackles the distortion issue of statistics estimated from the dataset with outliers by a re-sampling technique and accounts,rationally,for the statistical uncertainty by Bayesian machine learning.Moreover,the proposed approach also suggests an exclusive method to determine outlying components of each outlier.The proposed approach is illustrated and verified using simulated and real-life dataset.It showed that the proposed approach properly identifies outliers among sparse multivariate data and their corresponding outlying components in a probabilistic manner.It can significantly reduce the masking effect(i.e.,missing some actual outliers due to the distortion of statistics by the outliers and statistical uncertainty).It also found that outliers among sparse multivariate data instances affect significantly the construction of multivariate distribution of geotechnical parameters for uncertainty quantification.This emphasizes the necessity of data cleaning process(e.g.,outlier detection)for uncertainty quantification based on geoscience data.
文摘A macroscopical anomaly detection method based on intrusion statistic and Bayesian dynamic forecast is presented. A large number of alert data that cannot be dealt with in time are always aggregated in control centers of large-scale intrusion detection systems. In order to improve the efficiency and veracity of intrusion analysis, the intrusion intensity values are picked from alert data and Bayesian dynamic forecast method is used to detect anomaly. The experiments show that the new method is effective on detecting macroscopical anomaly in large-scale intrusion detection systems.
基金Supported by National Natural Science Foundation of China (No. 50278062 and 50578108)Science and Technology Innovation Funds Project of Tianjin, China (No. 08FDZDSF03200)
文摘A leak detection method based on Bayesian theory and Fisher’s law was developed for water distribution systems. A hydraulic model was associated with the parameters of leaks (location, extent). The randomness of parameter values was quantified by probability density function and updated by Bayesian theory. Values of the parameters were estimated based on Fisher’s law. The amount of leaks was estimated by back propagation neural network. Based on flow characteristics in water distribution systems, the location of leaks can be estimated. The effectiveness of the proposed method was illustrated by simulated leak data of node pressure head and flow rate of pipelines in a test pipe network, and the leaks were spotted accurately and renovated on time.
文摘A number of statistical tests are proposed for the purpose of change-point detection in a general nonparametric regression model under mild conditions. New proofs are given to prove the weak convergence of the underlying processes which assume remove the stringent condition of bounded total variation of the regression function and need only second moments. Since many quantities, such as the regression function, the distribution of the covariates and the distribution of the errors, are unspecified, the results are not distribution-free. A weighted bootstrap approach is proposed to approximate the limiting distributions. Results of a simulation study for this paper show good performance for moderate samples sizes.
文摘In order to apply speech recognition systems to actual circumstances such as inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-writing is difficult, some countermeasure methods for surrounding noise are indispensable. In this study, a signal detection method to remove the noise for actual speech signals is proposed by using Bayesian estimation with the aid of bone-conducted speech. More specifically, by introducing Bayes’ theorem based on the observation of air-conducted speech contaminated by surrounding background noise, a new type of algorithm for noise removal is theoretically derived. In the proposed speech detection method, bone-conducted speech is utilized in order to obtain precise estimation for speech signals. The effectiveness of the proposed method is experimentally confirmed by applying it to air- and bone-conducted speeches measured in real environment under the existence of surrounding background noise.
文摘A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing.
文摘Wireless ad ho network is becoming a new research fronter, in which security is an important issue. Usually some nodes act maliciously and they are able to do different kinds of Denial of Service (Dos). Because of the limited resource, intrusion detection system (IDS) runs all the time to detect intrusion of the attacker which is a costly overhead. In our model, we use game theory to model the interactions between the intrusion detection system and the attacker, and a realistic model is given by using Bayesian game. We solve the game by finding the Bayesian Nash equilibrium. The results of our analysis show that the IDS could work intermittently without compromising on its effectiveness. At the end of this paper, we provide an experiment to verify the rationality and effectiveness of the proposed model.
文摘To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.
基金the National High Technology Research and Development Program (863) of China(No.2009AA01Z427)the Joint Innovation Project for Industry-University-Institute in Jiangsu Province(No.BY2009149)
文摘Skin detection has been considered as the principal step in many machine vision systems,such as face detection and adult image filtering.Among all these techniques,skin color is the most welcome cue because of its robustness.However,traditional color-based approaches poorly perform on the classification of skin-like pixels.In this paper,we propose a new skin detection method based on the cascaded adaptive boosting(AdaBoost) classifier,which consists of minimum-risk based Bayesian classifier and models in different color spaces such as HSV(hue-saturation-value),YCgCb(brightness-green-blue) and YCgCr(brightness-green-red).In addition,we have constructed our own database that is larger and more suitable for training and testing on filtering adult images than the Compaq data set.Experimental results show that our method behaves better than the state-ofthe-art pixel-based skin detection techniques on processing images with skin-like background.
基金support by the Federal Ministry for Economic Affairs and Climate Action of Germany(BMWK)within the Innovation Platform“KEEN-Artificial Intelligence Incubator Laboratory in the Process Industry”(Grant No.01MK20014T)The research of L.B.is supported by the Swedish Research Council Grant VR 2018-03661。
文摘Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time series of process variables may have an important indication about the process operation.For example,in a batch process,the change points can correspond to the operations and phases defined by the batch recipe.Hence identifying change points can assist labelling the time series data.Various unsupervised algorithms have been developed for change point detection,including the optimisation approachwhich minimises a cost functionwith certain penalties to search for the change points.The Bayesian approach is another,which uses Bayesian statistics to calculate the posterior probability of a specific sample being a change point.The paper investigates how the two approaches for change point detection can be applied to process data analytics.In addition,a new type of cost function using Tikhonov regularisation is proposed for the optimisation approach to reduce irrelevant change points caused by randomness in the data.The novelty lies in using regularisation-based cost functions to handle ill-posed problems of noisy data.The results demonstrate that change point detection is useful for process data analytics because change points can produce data segments corresponding to different operating modes or varying conditions,which will be useful for other machine learning tasks.
基金Supported by the National Key R&D Program of China(No.2017YFC1405600)the National Natural Science Foundation of China(Nos.42076197,41576032)the Major Program for the International Cooperation of the Chinese Academy of Sciences(No.133337KYSB20160002)。
文摘Features of oil spills and look-alikes in polarimetric synthetic aperture radar(SAR)images always play an important role in oil spill detection.Many oil spill detection algorithms have been implemented based on these features.Although environmental factors such as wind speed are important to distinguish oil spills and look-alikes,some oil spill detection algorithms do not consider the environmental factors.To distinguish oil spills and look-alikes more accurately based on environmental factors and image features,a new oil spill detection algorithm based on Dempster-Shafer evidence theory was proposed.The process of oil spill detection taking account of environmental factors was modeled using the subjective Bayesian model.The Faster-region convolutional neural networks(RCNN)model was used for oil spill detection based on the convolution features.The detection results of the two models were fused at decision level using Dempster-Shafer evidence theory.The establishment and test of the proposed algorithm were completed based on our oil spill and look-alike sample database that contains 1798 image samples and environmental information records related to the image samples.The analysis and evaluation of the proposed algorithm shows a good ability to detect oil spills at a higher detection rate,with an identifi cation rate greater than 75%and a false alarm rate lower than 19%from experiments.A total of 12 oil spill SAR images were collected for the validation and evaluation of the proposed algorithm.The evaluation result shows that the proposed algorithm has a good performance on detecting oil spills with an overall detection rate greater than 70%.
文摘A semantic unit based event detection scheme in soccer videos is proposed in this paper.The scheme can be characterized as a three-layer framework. At the lowest layer, low-level featuresincluding color, texture, edge, shape, and motion are extracted. High-level semantic events aredefined at the highest layer. In order to connect low-level features and high-level semantics, wedesign and define some semantic units at the intermediate layer. A semantic unit is composed of asequence of consecutives frames with the same cue that is deduced from low-level features. Based onsemantic units, a Bayesian network is used to reason the probabilities of events. The experiments forshoot and card event detection in soccer videos show that the proposed method has an encouragingperformance.
文摘There exists model uncertainty of probability of detection for inspecting ship structures with nondestructive inspection techniques. Based on a comparison of several existing probability of detection (POD) models, a new probability of detection model is proposed for the updating of crack size distribution. Furthermore, the theoretical derivation shows that most existing probability of detection models are special cases of the new probability of detection model. The least square method is adopted for determining the values of parameters in the new POD model. This new model is also compared with other existing probability of detection models. The results indicate that the new probability of detection model can fit the inspection data better. This new probability of detection model is then applied to the analysis of the problem of crack size updating for offshore structures. The Bayesian updating method is used to analyze the effect of probability of detection models on the posterior distribution of a crack size. The results show that different probabilities of detection models generate different posterior distributions of a crack size for offshore structures.
基金the National Natural Science Foundation of China(Grant No.12072261)。
文摘In the engineering field,switching systems have been extensively studied,where sudden changes of parameter value and structural form have a significant impact on the operational performance of the system.Therefore,it is important to predict the behavior of the switching system,which includes the accurate detection of mutation points and rapid reidentification of the model.However,few efforts have been contributed to accurately locating the mutation points.In this paper,we propose a new measure of mutation detection—the threshold-based switching index by analogy with the Lyapunov exponent.We give the algorithm for selecting the optimal threshold,which greatly reduces the additional data collection and the relative error of mutation detection.In the system identification part,considering the small data amount available and noise in the data,the abrupt sparse Bayesian regression(abrupt-SBR)method is proposed.This method captures the model changes by updating the previously identified model,which requires less data and is more robust to noise than identifying the new model from scratch.With two representative dynamical systems,we illustrate the application and effectiveness of the proposed methods.Our research contributes to the accurate prediction and possible control of switching system behavior.
文摘When considering Intrusion Detection and the Insider Threat, most researchers tend to focus on the network architecture rather than the database which is the primary target of data theft. It is understood that the network level is adequate for many intrusions where entry into the system is being sought however it is grossly inadequate when considering the database and the authorized insider. Recent writings suggest that there have been many attempts to address the insider threat phenomena in regards to database technologies by the utilization of detection methodologies, policy management systems and behavior analysis methods however, there appears to be a lacking in the development of adequate solutions that will achieve the level of detection that is required. While it is true that Authorization is the cornerstone to the security of the database implementation, authorization alone is not enough to prevent the authorized entity from initiating malicious activities in regards to the data stored within the database. Behavior of the authorized entity must also be considered along with current data access control policies. Each of the previously mentioned approaches to intrusion detection at the database level has been considered individually, however, there has been limited research in producing a multileveled approach to achieve a robust solution. The research presented outlines the development of a detection framework by introducing a process that is to be implemented in conjunction with information requests. By utilizing this approach, an effective and robust methodology has been achieved that can be used to determine the probability of an intrusion by the authorized entity, which ultimately address the insider threat phenomena at its most basic level.