In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown tha...In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown that the proposed empirical Bayes estimaiton can be arbitrarily close to 1 under certain conditions.展开更多
A Bayesian method is used to evaluate the component safety failure model parameter of the safe arming system of an air faced missile in flight. It was proved that Bayes estimation of the model parameter is coinciden...A Bayesian method is used to evaluate the component safety failure model parameter of the safe arming system of an air faced missile in flight. It was proved that Bayes estimation of the model parameter is coincident with the physical explanation of the prior probability density distribution of the random parameter.展开更多
Under square loss, this paper constructs the empirical Bayes(EB) estimation for the parameter of normal distribution which has both asymptotic optimality and admissibility. Moreover, the convergence rate of the EB e...Under square loss, this paper constructs the empirical Bayes(EB) estimation for the parameter of normal distribution which has both asymptotic optimality and admissibility. Moreover, the convergence rate of the EB estimation obtained is proved to be O(n^-1).展开更多
The empirical Bayes estimation for parameters of the one-side truncated distribution family with convergence rate which can close to 1 arbitrarily is investigated using NA samples and an exam-ple that satisfies the co...The empirical Bayes estimation for parameters of the one-side truncated distribution family with convergence rate which can close to 1 arbitrarily is investigated using NA samples and an exam-ple that satisfies the conditions of theorem is given.展开更多
In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares...In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.展开更多
This paper presents the Bayes estimation and empirical Bayes estimation of causal effects in a counterfactual model. It also gives three kinds of prior distribution of the assumptions of replaceability. The experiment...This paper presents the Bayes estimation and empirical Bayes estimation of causal effects in a counterfactual model. It also gives three kinds of prior distribution of the assumptions of replaceability. The experiment shows that empirical Bayes estimation is better than other estimations when not knowing which assumption is true.展开更多
In this paper, the Bayes estimator of the error variance is derived in a linear regression model, and the parametric empirical Bayes estimator (PEBE) is constructed. The superiority of the PEBE over the least square...In this paper, the Bayes estimator of the error variance is derived in a linear regression model, and the parametric empirical Bayes estimator (PEBE) is constructed. The superiority of the PEBE over the least squares estimator (LSE) is investigated under the mean square error (MSE) criterion. Finally, some simulation results for the PEBE are obtained.展开更多
In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n...In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.展开更多
In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0&...In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0<λ,r≤1,Mn≤lnln n (for large n),Mn→∞ as n→∞.展开更多
In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Poste...In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method.展开更多
For the multi-parameter discrete exponential family,we construct an empirical Bayes(EB)estimator of the vector-valued parameterθ.under some conditions,this estimator is proved to be asymptotically optimal.
A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam displacement monitoring networks, is presented. The hyper-par...A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam displacement monitoring networks, is presented. The hyper-parameters of the prior distributions are obtained by Bayesian empirical methods with non-informative meta-priors. The performances of the Bayes estimator and the classical generalized lest squares estimator are compared using two measurements of the horizontal monitoring network of a concrete gravity dam: the Penha Garcia dam (Portugal). In order to test the robustness of the two estimators, a gross error is added to one of the measured horizontal directions: the Bayes estimator proves to be significantly more robust than the classic maximum likelihood estimator.展开更多
We present Bayes estimators, highest posterior density (HPD) intervals, and maximum likelihood estimators (MLEs), for the Maxwell failure distribution based on Type II censored data, i.e. using the first r lifetimes f...We present Bayes estimators, highest posterior density (HPD) intervals, and maximum likelihood estimators (MLEs), for the Maxwell failure distribution based on Type II censored data, i.e. using the first r lifetimes from a group of n components under test. Reliability/Hazard function estimates, Bayes predictive distributions and highest posterior density prediction intervals for a future observation are also considered. Two data examples and a Monte Carlo simulation study are used to illustrate the results and to compare the performances of the different methods.展开更多
Accelerated life tests play a vital role in reliability analysis,especially as advanced technologies lead to the production of highly reliable products to meet market demands and competition.Among these tests,progress...Accelerated life tests play a vital role in reliability analysis,especially as advanced technologies lead to the production of highly reliable products to meet market demands and competition.Among these tests,progressive-stress accelerated life tests(PSALT)allow for continuous changes in applied stress.Additionally,the generalized progressive hybrid censoring(GPHC)scheme has attracted significant attention in reliability and survival analysis,particularly for handling censored data in accelerated testing.It has been applied to various failure models,including competing risks and step-stress models.However,despite its growing relevance,a notable gap remains in the literature regarding the application of GPHC in PSALT models.This paper addresses that gap by studying PSALT under a GPHC scheme with binomial removal.Specifically,it considers lifetimes following the quasi-Xgamma distribution.Model parameters are estimated using both maximum likelihood and Bayesian methods under gamma priors.Interval estimation is provided through approximate confidence intervals,bootstrap methods,and Bayesian credible intervals.Bayesian estimators are derived under squared error and entropy loss functions,using informative priors in simulation and non-informative priors in real data applications.A simulation study is conducted to evaluate various censoring schemes,with coverage probabilities and interval widths assessed via Monte Carlo simulations.Additionally,Bayesian predictive estimates and intervals are presented.The proposed methodology is illustrated through the analysis of two real-world accelerated life test datasets.展开更多
We consider a series system of two independent and non-identical components which have different BurrⅫ distributed lifetime.The maximum likelihood and Bayes estimators of the parameters of the system's components ar...We consider a series system of two independent and non-identical components which have different BurrⅫ distributed lifetime.The maximum likelihood and Bayes estimators of the parameters of the system's components are obtained based on masked system life test data.The conclusion is that the Bayes estimates are better than the maximum likelihood estimates in the sense of having smaller mean squared errors.展开更多
The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies...The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies. This is based on the solution of an inverse generalized evaluate problem. The stochastic nature of test data is considered and a normal distribution is used for the measurement frequencies. An additional feature is that the engineer's confidence in the measurement frequencies is quantified and incorporated into the identification procedure. A numerical example demonstrates the efficiency of the method.展开更多
A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively ...A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings.展开更多
The parameter estimation is considered for the Gompertz distribution under frequensitst and Bayes approaches when records are available.Maximum likelihood estimators,exact and approximate confidence intervals are deve...The parameter estimation is considered for the Gompertz distribution under frequensitst and Bayes approaches when records are available.Maximum likelihood estimators,exact and approximate confidence intervals are developed for the model parameters,and Bayes estimators of reliability performances are obtained under different losses based on a mixture of continuous and discrete priors.To investigate the performance of the proposed estimators,a record simulation algorithm is provided and a numerical study is presented by using Monte-Carlo simulation.展开更多
In this paper, the estimation of parameters based on a progressively typeI interval censored sample from a Pareto distribution is studied. Different methods of estimation are discussed, which include mid-point approxi...In this paper, the estimation of parameters based on a progressively typeI interval censored sample from a Pareto distribution is studied. Different methods of estimation are discussed, which include mid-point approximation estimator, the maximum likelihood estimator and moment estimator. The estimation procedures are discussed in details and compared via Monte Carlo simulations in terms of their biases.展开更多
In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in ter...In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.展开更多
文摘In this paper, we construct the EB estim ation for the parameter of the two-dimensional one side truncat ed distribution fam ilies using Linex loss. The convergence rate of EB estimation is given and it is shown that the proposed empirical Bayes estimaiton can be arbitrarily close to 1 under certain conditions.
文摘A Bayesian method is used to evaluate the component safety failure model parameter of the safe arming system of an air faced missile in flight. It was proved that Bayes estimation of the model parameter is coincident with the physical explanation of the prior probability density distribution of the random parameter.
基金Supported by the Natural Science Foundation of China(70471057)Supported by the Natural Science Foundation of Education Department of Shaanxi Province(03JK065)
文摘Under square loss, this paper constructs the empirical Bayes(EB) estimation for the parameter of normal distribution which has both asymptotic optimality and admissibility. Moreover, the convergence rate of the EB estimation obtained is proved to be O(n^-1).
文摘The empirical Bayes estimation for parameters of the one-side truncated distribution family with convergence rate which can close to 1 arbitrarily is investigated using NA samples and an exam-ple that satisfies the conditions of theorem is given.
基金the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX3-SYW-S02)the Youth Foundation of USTC
文摘In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.
文摘This paper presents the Bayes estimation and empirical Bayes estimation of causal effects in a counterfactual model. It also gives three kinds of prior distribution of the assumptions of replaceability. The experiment shows that empirical Bayes estimation is better than other estimations when not knowing which assumption is true.
文摘In this paper, the Bayes estimator of the error variance is derived in a linear regression model, and the parametric empirical Bayes estimator (PEBE) is constructed. The superiority of the PEBE over the least squares estimator (LSE) is investigated under the mean square error (MSE) criterion. Finally, some simulation results for the PEBE are obtained.
文摘In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.
文摘In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0<λ,r≤1,Mn≤lnln n (for large n),Mn→∞ as n→∞.
文摘In this paper,we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform(2D-SMCWT).The fusion of the detail 2D-SMCWT cofficients is performed via a Bayesian Maximum a Posteriori(MAP)approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients.For the approx imation coefficients,a new fusion rule based on the Principal Component Analysis(PCA)is applied.We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method.The obt ained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics.Robustness of the proposed method is further tested against different types of noise.The plots of fusion met rics establish the accuracy of the proposed fusion method.
文摘For the multi-parameter discrete exponential family,we construct an empirical Bayes(EB)estimator of the vector-valued parameterθ.under some conditions,this estimator is proved to be asymptotically optimal.
文摘A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam displacement monitoring networks, is presented. The hyper-parameters of the prior distributions are obtained by Bayesian empirical methods with non-informative meta-priors. The performances of the Bayes estimator and the classical generalized lest squares estimator are compared using two measurements of the horizontal monitoring network of a concrete gravity dam: the Penha Garcia dam (Portugal). In order to test the robustness of the two estimators, a gross error is added to one of the measured horizontal directions: the Bayes estimator proves to be significantly more robust than the classic maximum likelihood estimator.
文摘We present Bayes estimators, highest posterior density (HPD) intervals, and maximum likelihood estimators (MLEs), for the Maxwell failure distribution based on Type II censored data, i.e. using the first r lifetimes from a group of n components under test. Reliability/Hazard function estimates, Bayes predictive distributions and highest posterior density prediction intervals for a future observation are also considered. Two data examples and a Monte Carlo simulation study are used to illustrate the results and to compare the performances of the different methods.
基金supported and funded by the Deanship of Scientifc Research at ImamMohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2503).
文摘Accelerated life tests play a vital role in reliability analysis,especially as advanced technologies lead to the production of highly reliable products to meet market demands and competition.Among these tests,progressive-stress accelerated life tests(PSALT)allow for continuous changes in applied stress.Additionally,the generalized progressive hybrid censoring(GPHC)scheme has attracted significant attention in reliability and survival analysis,particularly for handling censored data in accelerated testing.It has been applied to various failure models,including competing risks and step-stress models.However,despite its growing relevance,a notable gap remains in the literature regarding the application of GPHC in PSALT models.This paper addresses that gap by studying PSALT under a GPHC scheme with binomial removal.Specifically,it considers lifetimes following the quasi-Xgamma distribution.Model parameters are estimated using both maximum likelihood and Bayesian methods under gamma priors.Interval estimation is provided through approximate confidence intervals,bootstrap methods,and Bayesian credible intervals.Bayesian estimators are derived under squared error and entropy loss functions,using informative priors in simulation and non-informative priors in real data applications.A simulation study is conducted to evaluate various censoring schemes,with coverage probabilities and interval widths assessed via Monte Carlo simulations.Additionally,Bayesian predictive estimates and intervals are presented.The proposed methodology is illustrated through the analysis of two real-world accelerated life test datasets.
基金Supported by the National Natural Science Foundation of China(70471057)
文摘We consider a series system of two independent and non-identical components which have different BurrⅫ distributed lifetime.The maximum likelihood and Bayes estimators of the parameters of the system's components are obtained based on masked system life test data.The conclusion is that the Bayes estimates are better than the maximum likelihood estimates in the sense of having smaller mean squared errors.
文摘The Bayesian method of statistical analysis has been applied to the parameter identification problem. A method is presented to identify parameters of dynamic models with the Bayes estimators of measurement frequencies. This is based on the solution of an inverse generalized evaluate problem. The stochastic nature of test data is considered and a normal distribution is used for the measurement frequencies. An additional feature is that the engineer's confidence in the measurement frequencies is quantified and incorporated into the identification procedure. A numerical example demonstrates the efficiency of the method.
基金This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R50)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings.
基金supported by the National Natural Science Foundation of China(1150143371473187)+1 种基金the Fundamental Research Funds for the Central Universities(JB1507177215591806)
文摘The parameter estimation is considered for the Gompertz distribution under frequensitst and Bayes approaches when records are available.Maximum likelihood estimators,exact and approximate confidence intervals are developed for the model parameters,and Bayes estimators of reliability performances are obtained under different losses based on a mixture of continuous and discrete priors.To investigate the performance of the proposed estimators,a record simulation algorithm is provided and a numerical study is presented by using Monte-Carlo simulation.
基金The NSF (11271155,11001105,11071126,10926156 and 11071269) of Chinathe Specialized Research Fund (20110061110003 and 20090061120037) for the Doctoral Program of Higher Education+1 种基金the General Humanities and Social Science Research Projects (11YJAZH125) Sponsored by Ministry of Educationthe Science and Technology Development Program (201201082) of Jilin Province
文摘In this paper, the estimation of parameters based on a progressively typeI interval censored sample from a Pareto distribution is studied. Different methods of estimation are discussed, which include mid-point approximation estimator, the maximum likelihood estimator and moment estimator. The estimation procedures are discussed in details and compared via Monte Carlo simulations in terms of their biases.
基金This research is supported by National Natural Science Foundation of China under Grant Nos. 10801123, 10801124 and 10771204, and the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No. KJCX3-SYW-S02.
文摘In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.