设{X_i,i≥1}是一严平稳零均值LPQD随机变量序列,0<EX_1~2<∞,σ~2=EX_1~2+sum from j=2 to ∞(E(X_1X_j)),并且0<σ~2<∞,令S_n=sum from i=1 to n(X_i),利用部分和S_n的弱收敛定理,证明了当ε→0时,sum from n≥1 to(n^(r...设{X_i,i≥1}是一严平稳零均值LPQD随机变量序列,0<EX_1~2<∞,σ~2=EX_1~2+sum from j=2 to ∞(E(X_1X_j)),并且0<σ~2<∞,令S_n=sum from i=1 to n(X_i),利用部分和S_n的弱收敛定理,证明了当ε→0时,sum from n≥1 to(n^(r/p-2))P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to(1/n)P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to((1n n)~δ/n)P〔│S_n│≥ε(n 1n n)~(1/2)〕的精确渐近性.展开更多
Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n...Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n|≥εn^1p ),_~n≥1 1nP(|S_n|≥εn^1p ) and _~n≥1 (log n)δnP(|S_n|≥εnlogn) as ε0 are established.展开更多
ESWC法国总部主席Renaud De La Baume先生于2月2日到4日访问北京,并对中国赛区的各项准备工作进行了考察,并与中华全国体育总会的相关领导就赛事筹备、执行等多方面工作交换了意见。ESWC中国赛区指定会刊《电子竞技》于2月3日对Renaud D...ESWC法国总部主席Renaud De La Baume先生于2月2日到4日访问北京,并对中国赛区的各项准备工作进行了考察,并与中华全国体育总会的相关领导就赛事筹备、执行等多方面工作交换了意见。ESWC中国赛区指定会刊《电子竞技》于2月3日对Renaud De La Baume先生(以下简称Renaud)进行了独家专访。展开更多
论文在传统一阶隐马尔可夫模型的基础上,针对隐马尔可夫模型结构信息挖掘不全面的问题,提出了一种双层隐马尔可夫模型。双层隐马尔可夫模型在使用Baum-Welch算法的过程中将词性序列视为观测序列,通过Baum-Welch算法提取更多信息并最大...论文在传统一阶隐马尔可夫模型的基础上,针对隐马尔可夫模型结构信息挖掘不全面的问题,提出了一种双层隐马尔可夫模型。双层隐马尔可夫模型在使用Baum-Welch算法的过程中将词性序列视为观测序列,通过Baum-Welch算法提取更多信息并最大化词性序列概率从而更加贴合实际情况,同时对Viterbi算法做了相应的改动。模型在Penn Treebank语料库和Groningen Meaning Bank语料库上进行10折交叉验证,并与传统一阶、二阶隐马尔可夫模型进行对比。结果表明双层隐马尔可夫模型相较传统一阶、二阶隐马尔可夫模型词性标注正确率更高。展开更多
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d...Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.展开更多
Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i...Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut.展开更多
For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of ...For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm is investigated. Sets of conditions are provided under which (i) lim sup n→∞ ||Sn||/an〈∞ a.s.and ∞ ∑n=1(1/n)P(||Sn||/an ≥ε〈∞for all ε 〉 λ for some constant λ ∈ [0, ∞) are equivalent;(ii) For all constants λ ∈ [0, ∞),lim sup ||Sn||/an =λ a.s.and ^∞∑ n=1(1/n) P(||Sn||/an ≥ε){〈∞, if ε〉λ =∞,if ε〈λare equivalent. In general, no geometric conditions are imposed on the underlying Banach space. Corollaries are presented and new results are obtained even in the case of real-valued random variables.展开更多
文摘设{X_i,i≥1}是一严平稳零均值LPQD随机变量序列,0<EX_1~2<∞,σ~2=EX_1~2+sum from j=2 to ∞(E(X_1X_j)),并且0<σ~2<∞,令S_n=sum from i=1 to n(X_i),利用部分和S_n的弱收敛定理,证明了当ε→0时,sum from n≥1 to(n^(r/p-2))P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to(1/n)P〔│S_n│≥εn^(1/p)〕,sum from n≥1 to((1n n)~δ/n)P〔│S_n│≥ε(n 1n n)~(1/2)〕的精确渐近性.
文摘Let {X_i;i≥1} be a strictly stationary sequence of associated random variables with mean zero and let σ2=EX2_1+2∞_~j=2 EX_1X_j with 0<σ2<∞.Set S_n=n_~i=1 X_i,the precise asymptotics for _~n≥1 n^rp-2 P(|S_n|≥εn^1p ),_~n≥1 1nP(|S_n|≥εn^1p ) and _~n≥1 (log n)δnP(|S_n|≥εnlogn) as ε0 are established.
文摘ESWC法国总部主席Renaud De La Baume先生于2月2日到4日访问北京,并对中国赛区的各项准备工作进行了考察,并与中华全国体育总会的相关领导就赛事筹备、执行等多方面工作交换了意见。ESWC中国赛区指定会刊《电子竞技》于2月3日对Renaud De La Baume先生(以下简称Renaud)进行了独家专访。
文摘论文在传统一阶隐马尔可夫模型的基础上,针对隐马尔可夫模型结构信息挖掘不全面的问题,提出了一种双层隐马尔可夫模型。双层隐马尔可夫模型在使用Baum-Welch算法的过程中将词性序列视为观测序列,通过Baum-Welch算法提取更多信息并最大化词性序列概率从而更加贴合实际情况,同时对Viterbi算法做了相应的改动。模型在Penn Treebank语料库和Groningen Meaning Bank语料库上进行10折交叉验证,并与传统一阶、二阶隐马尔可夫模型进行对比。结果表明双层隐马尔可夫模型相较传统一阶、二阶隐马尔可夫模型词性标注正确率更高。
基金Research supported by Natural Science Foundation of China(No.10071072)
文摘Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.
基金a grant from the Natural Sciences and Engineering Research Council of Canada
文摘Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut.
基金the Natural Sciences and Engineering Research Council of Canada
文摘For a sequence of i.i.d. Banach space-valued random variables {Xn; n ≥ 1} and a sequence of positive constants {an; n ≥ 1}, the relationship between the Baum-Katz-Spitzer complete convergence theorem and the law of the iterated logarithm is investigated. Sets of conditions are provided under which (i) lim sup n→∞ ||Sn||/an〈∞ a.s.and ∞ ∑n=1(1/n)P(||Sn||/an ≥ε〈∞for all ε 〉 λ for some constant λ ∈ [0, ∞) are equivalent;(ii) For all constants λ ∈ [0, ∞),lim sup ||Sn||/an =λ a.s.and ^∞∑ n=1(1/n) P(||Sn||/an ≥ε){〈∞, if ε〉λ =∞,if ε〈λare equivalent. In general, no geometric conditions are imposed on the underlying Banach space. Corollaries are presented and new results are obtained even in the case of real-valued random variables.