The Bikaner-Nagaur and Barmer Basins(Rajasthan)are the most important petroliferous sedimentary basins in India.For over a decade,the exploration and extraction of hydrocarbons in these basins.Paleocene-Eocene age roc...The Bikaner-Nagaur and Barmer Basins(Rajasthan)are the most important petroliferous sedimentary basins in India.For over a decade,the exploration and extraction of hydrocarbons in these basins.Paleocene-Eocene age rocks bear organic-rich sediments in these basins,including lignite and carbonaceous shale deposits.The present research investigates the source rock properties,petroleum potential and thermal maturity of the carbonaceous shale partings from the lignite mines of Gurha(Bikaner-Nagaur Basin)and Kapurdi(Barmer Basin)using petrographical and geochemical tools.The carbonaceous shales have high organic matter(OM),with considerable total organic carbon(TOC)contents ranging from 13%to 39%.Furthermore,they contain hydrogen-rich kerogen,including types II and II/III,as evidenced by the Rock-Eval and elemental analysis results.The existence of these kerogen types indicates the abundance of reactive(vitrinite and liptinite)macerals.However,the carbonaceous shales from the Bikaner–Nagaur Basin have oil generation potentials,with a high hydrogen index(up to 516 mg HC/g TOC)and a H/C ratio(up to 1.5)along with a significant presence of oil-prone liptinitic macerals.Apart from the geochemical and petrological results,the studied shales have low huminite reflectance(0.31%–0.48%),maximum temperature(S_(2) peak;Tmax)between 419℃ and 429℃,and low production index values(PI:0.01–0.03).These results indicate that these carbonaceous shales contain immature OM,and thereby,they cannot yet release commercial amount of oil.This immaturity level in the studied outcrop section is due to the shallow burial depth.Geochemical proxies further indicate the presence of both oil and gas-prone source rocks.展开更多
The lignite samples collected from Giral lignite field of Barmer basin have been subjected to petrological investigation. The data generated has been discussed to understand the evolution of the paleomires of these li...The lignite samples collected from Giral lignite field of Barmer basin have been subjected to petrological investigation. The data generated has been discussed to understand the evolution of the paleomires of these lignites. The present study reveals that these low rank C coals are chiefly composed of huminite group macerals, mainly telohuminite and detrohuminite, while liptinite and inertinite group macerals occur in subordinate amounts. Not much variation in the maceral composition from Seam-I to Seam-VIII has been observed. Barmer lignites are characterized by a very high GI (〉10) and moderate TPI indicating topogenous mire in the basin which was permanently flooded. The GI and TPI values and the petrography-based facies critical models indicate that these lignites originated mostly under wet forest swamp to clastic marsh having telmatic to limno-telmatic conditions with a moderate rate of subsidence and a very slow fall in ground water table. Further, the GWI and VI values are suggestive of mesotrophic to rheotrophic hydrological conditions having the dominance of herbaceous to marginal aquatic vegetation. There were spells of periodic drowning of peat especially during the formation of Seam-VII. Moderately high concentration of calcium in these lignites along with the presence of framboidal pyrite indicate enhanced sulphate-reducing bacterial activity present in carbonate and sulphate-rich waters in the basin during peat formation.展开更多
Globally bentoite clay has been proposed as an engineered barrier material for safe underground disposal of high-level nuclear waste.Clay has many favorable properties such as high liquid limit,and plastic limit along...Globally bentoite clay has been proposed as an engineered barrier material for safe underground disposal of high-level nuclear waste.Clay has many favorable properties such as high liquid limit,and plastic limit along with other properties which make it the most suitable for this application.In the present study,an attempt has been made to study the behavior of Barmer bentonite under the influence of high temperatures up to 120℃.Properties of barmer bentonite namely,liquid limit,plastic limit,and maximum dry density have been determined after thermal treatment at 25℃,60℃,80℃,100℃ and 120℃.The extensive experimental results indicate that liquid limit and plastic limit show a decreasing trend while maximum dry density increases with an increase in temperature.Liquid limit and plastic limit decrease up to 12%and 11%respectively when the temperature reaches up to 120℃.Maximum dry density increases by 10%due to thermal treatment and optimum water content decreases by up to 4%.Statistical analysis has been carried out to obtain the correlation between temperature and physical properties of Barmer bentonite such as liquid limit,plastic limit,maximum dry density,and optimum water content.The XRD analysis of Barmer bentonite at room temperature and 120℃ shows very small variation in mineralogical composition.Whereas,interlayer distance has been measured and found to be decreasing with an increase in temperature.Further,a comparative analysis shows that the measured properties of studied Barmer bentonite lie in the range of previously measured values of other types of bentonite across the globe.展开更多
Whether swarms of preferentially oriented dykes are controlled by regional stress fields, or passively exploit basement structural fabric, is a much debated question, with support for either scenario in individual cas...Whether swarms of preferentially oriented dykes are controlled by regional stress fields, or passively exploit basement structural fabric, is a much debated question, with support for either scenario in individual case studies. The Sarnu-Dandali alkaline complex, near the northwestern limit of the Deccan Traps continental flood basalt province, contains mafic to felsic alkaline volcano-plutonic rocks and carbonatites. The complex is situated near the northern end of the 600 km long, NNWe SSE-trending Barmer-Cambay rift. Mafic enclave swarms in the syenites suggest synplutonic mafic dykes injected into a largely liquid felsic magma chamber. Later coherent dykes in the complex, of all compositions and sizes,dominantly strike NNWe SSE, parallel to the Barmer-Cambay rift. The rift formed during two distinct episodes of extension, NWe SE in the early Cretaceous and NEe SW in the late Cretaceous. Control of the southern Indian Dharwar structural fabric on the rift trend, as speculated previously, is untenable,whereas the regional Precambrian basement trends(Aravalli and Malani) run NEe SW and NNEe SSW.We therefore suggest that the small-scale Sarnu-Dandali dykes and the much larger-scale BarmerCambay rift were not controlled by basement structure, but related to contemporaneous, late Cretaceous regional ENEe WSW extension, for which there is varied independent evidence.展开更多
基金The University of Malaya's postdoctoral fellowship program has been acknowledged by the first author and is associated with grant number IF064-2019the Department of Science and Technology (Project No. SB/S4/ES-681/2013), Government of India, for their supportthe Researchers Supporting Project number (RSPD2024R546) at King Saud University in Riyadh, Saudi Arabia
文摘The Bikaner-Nagaur and Barmer Basins(Rajasthan)are the most important petroliferous sedimentary basins in India.For over a decade,the exploration and extraction of hydrocarbons in these basins.Paleocene-Eocene age rocks bear organic-rich sediments in these basins,including lignite and carbonaceous shale deposits.The present research investigates the source rock properties,petroleum potential and thermal maturity of the carbonaceous shale partings from the lignite mines of Gurha(Bikaner-Nagaur Basin)and Kapurdi(Barmer Basin)using petrographical and geochemical tools.The carbonaceous shales have high organic matter(OM),with considerable total organic carbon(TOC)contents ranging from 13%to 39%.Furthermore,they contain hydrogen-rich kerogen,including types II and II/III,as evidenced by the Rock-Eval and elemental analysis results.The existence of these kerogen types indicates the abundance of reactive(vitrinite and liptinite)macerals.However,the carbonaceous shales from the Bikaner–Nagaur Basin have oil generation potentials,with a high hydrogen index(up to 516 mg HC/g TOC)and a H/C ratio(up to 1.5)along with a significant presence of oil-prone liptinitic macerals.Apart from the geochemical and petrological results,the studied shales have low huminite reflectance(0.31%–0.48%),maximum temperature(S_(2) peak;Tmax)between 419℃ and 429℃,and low production index values(PI:0.01–0.03).These results indicate that these carbonaceous shales contain immature OM,and thereby,they cannot yet release commercial amount of oil.This immaturity level in the studied outcrop section is due to the shallow burial depth.Geochemical proxies further indicate the presence of both oil and gas-prone source rocks.
文摘The lignite samples collected from Giral lignite field of Barmer basin have been subjected to petrological investigation. The data generated has been discussed to understand the evolution of the paleomires of these lignites. The present study reveals that these low rank C coals are chiefly composed of huminite group macerals, mainly telohuminite and detrohuminite, while liptinite and inertinite group macerals occur in subordinate amounts. Not much variation in the maceral composition from Seam-I to Seam-VIII has been observed. Barmer lignites are characterized by a very high GI (〉10) and moderate TPI indicating topogenous mire in the basin which was permanently flooded. The GI and TPI values and the petrography-based facies critical models indicate that these lignites originated mostly under wet forest swamp to clastic marsh having telmatic to limno-telmatic conditions with a moderate rate of subsidence and a very slow fall in ground water table. Further, the GWI and VI values are suggestive of mesotrophic to rheotrophic hydrological conditions having the dominance of herbaceous to marginal aquatic vegetation. There were spells of periodic drowning of peat especially during the formation of Seam-VII. Moderately high concentration of calcium in these lignites along with the presence of framboidal pyrite indicate enhanced sulphate-reducing bacterial activity present in carbonate and sulphate-rich waters in the basin during peat formation.
文摘Globally bentoite clay has been proposed as an engineered barrier material for safe underground disposal of high-level nuclear waste.Clay has many favorable properties such as high liquid limit,and plastic limit along with other properties which make it the most suitable for this application.In the present study,an attempt has been made to study the behavior of Barmer bentonite under the influence of high temperatures up to 120℃.Properties of barmer bentonite namely,liquid limit,plastic limit,and maximum dry density have been determined after thermal treatment at 25℃,60℃,80℃,100℃ and 120℃.The extensive experimental results indicate that liquid limit and plastic limit show a decreasing trend while maximum dry density increases with an increase in temperature.Liquid limit and plastic limit decrease up to 12%and 11%respectively when the temperature reaches up to 120℃.Maximum dry density increases by 10%due to thermal treatment and optimum water content decreases by up to 4%.Statistical analysis has been carried out to obtain the correlation between temperature and physical properties of Barmer bentonite such as liquid limit,plastic limit,maximum dry density,and optimum water content.The XRD analysis of Barmer bentonite at room temperature and 120℃ shows very small variation in mineralogical composition.Whereas,interlayer distance has been measured and found to be decreasing with an increase in temperature.Further,a comparative analysis shows that the measured properties of studied Barmer bentonite lie in the range of previously measured values of other types of bentonite across the globe.
基金supported by the Industrial Research and Consultancy Centre (IRCC), IIT Bombay (Grant No. 09YIA001 to Sheth)supported by a Ph.D. Scholarship from the University Grants Commission (UGC), Govt. of India
文摘Whether swarms of preferentially oriented dykes are controlled by regional stress fields, or passively exploit basement structural fabric, is a much debated question, with support for either scenario in individual case studies. The Sarnu-Dandali alkaline complex, near the northwestern limit of the Deccan Traps continental flood basalt province, contains mafic to felsic alkaline volcano-plutonic rocks and carbonatites. The complex is situated near the northern end of the 600 km long, NNWe SSE-trending Barmer-Cambay rift. Mafic enclave swarms in the syenites suggest synplutonic mafic dykes injected into a largely liquid felsic magma chamber. Later coherent dykes in the complex, of all compositions and sizes,dominantly strike NNWe SSE, parallel to the Barmer-Cambay rift. The rift formed during two distinct episodes of extension, NWe SE in the early Cretaceous and NEe SW in the late Cretaceous. Control of the southern Indian Dharwar structural fabric on the rift trend, as speculated previously, is untenable,whereas the regional Precambrian basement trends(Aravalli and Malani) run NEe SW and NNEe SSW.We therefore suggest that the small-scale Sarnu-Dandali dykes and the much larger-scale BarmerCambay rift were not controlled by basement structure, but related to contemporaneous, late Cretaceous regional ENEe WSW extension, for which there is varied independent evidence.