By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial res...By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.展开更多
Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically th...Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.展开更多
Binary code signals have been widely used in various radars due to their simpleimplementation,but the selection of the binary codes with high comporession ratio and lowsidelobes is not solved well,because of the diffi...Binary code signals have been widely used in various radars due to their simpleimplementation,but the selection of the binary codes with high comporession ratio and lowsidelobes is not solved well,because of the difficult processing in mathmatics and expensivecalculation cost.In this paper,neural computing is introduced into the field of the selection ofbinary codes and a new method based’on simulated annealing(SA)is proposed.The experimentsshow that the proposed method is able to select the optimal binary codes with much less timecost than the known methods,furhtermore the optimization selection of the binary codes versusthe calculation cost tradeoff is easier.展开更多
Binary analysis, as an important foundational technology, provides support for numerous applications in the fields of software engineering and security research. With the continuous expansion of software scale and the...Binary analysis, as an important foundational technology, provides support for numerous applications in the fields of software engineering and security research. With the continuous expansion of software scale and the complex evolution of software architecture, binary analysis technology is facing new challenges. To break through existing bottlenecks, researchers have applied artificial intelligence (AI) technology to the understanding and analysis of binary code. The core lies in characterizing binary code, i.e., how to use intelligent methods to generate representation vectors containing semantic information for binary code, and apply them to multiple downstream tasks of binary analysis. In this paper, we provide a comprehensive survey of recent advances in binary code representation technology, and introduce the workflow of existing research in two parts, i.e., binary code feature selection methods and binary code feature embedding methods. The feature selection section includes mainly two parts: definition and classification of features, and feature construction. First, the abstract definition and classification of features are systematically explained, and second, the process of constructing specific representations of features is introduced in detail. In the feature embedding section, based on the different intelligent semantic understanding models used, the embedding methods are classified into four categories based on the usage of text-embedding models and graph-embedding models. Finally, we summarize the overall development of existing research and provide prospects for some potential research directions related to binary code representation technology.展开更多
Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Althoug...Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.展开更多
In 5G new radio(NR), polar codes are adopted for e MBB downlink control channels where the blind detection is employed in user equipment(UE) to identify the correct downlink control information(DCI). However, differen...In 5G new radio(NR), polar codes are adopted for e MBB downlink control channels where the blind detection is employed in user equipment(UE) to identify the correct downlink control information(DCI). However, different from that in the 4G LTE system, the cyclic redundancy check(CRC) in polar decoding plays both error correction and error detection roles. Consequently, the false alarm rates(FAR) may not meet the system requirements(FAR<1.52 × 10^(−5)). In this paper, to mitigate the FAR in polar code blind detection, we attach a binary classifier after the polar decoder to further remove the false alarm results and meanwhile retain the correct DCI. This classifier works by tracking the squared Euclidean distance ratio(SEDR) between the received signal and hypothesis. We derive an analytical method to fast compute proper classification threshold that is implementation-friendly in practical use. Combining the well-designed classifier, we show that some very short CRC sequences can even be used to meet the FAR requirements. This consequently reduces the CRC overhead and contributes to the system error performance improvements.展开更多
Single pulse excited ultrasonic guided wave surfers high attenuation during the propagation in long bones.This results in small amplitude and low signal-to-noise ratio(SNR)of measured signals.Thus,the Barker code ex...Single pulse excited ultrasonic guided wave surfers high attenuation during the propagation in long bones.This results in small amplitude and low signal-to-noise ratio(SNR)of measured signals.Thus,the Barker code excitation is introduced into long bone detection to improve the quality of received signals,due to its efficiency in increasing amplitude and SNR.Both simulation and in vitro experiment were performed,and the results were decoded by the weighted match filter(WMF) and the finite impulse response- least squares inverse filter(FIRLSIF),respectively.The comparison between the results of Barker code excitation and sine pulse excitation was presented.For 13-bit Barker code excitation,WMF produced 13 times larger amplitude than sine pulse excitation,while FIR-LSIF achieved higher peak-sidelobe-level(PSL) of -63.59 dB and better performance in noise suppression.The results show that the Barker code excited guided waves have the potential to be applied to the long bone detection.展开更多
A simple and convcnient method to gain bulk acoustic wave Barker code sequence is presented and the results of the correlation are givcn. The transducer response to a unit electric pulse is used as a unit code constit...A simple and convcnient method to gain bulk acoustic wave Barker code sequence is presented and the results of the correlation are givcn. The transducer response to a unit electric pulse is used as a unit code constituting the Barker code sequence of acoustic signal. The phase precision of the code sequence as well as the fairly ideal response function are guaranteed by the high accuraey of a DATA-2020 Arbitrary Waveform Synthesizer and a DATA-6000 Universal Wavcform Analyzer. Some deviations between the experiments and thcory are caused by the transient response and timc delay characteristics of the ultrasonic tansducer.展开更多
In this paper, a statistical recognition method of the binary BCH code is proposed. The method is applied to both primitive and non-primitive binary BCH code. The block length is first recognized based on the cyclic f...In this paper, a statistical recognition method of the binary BCH code is proposed. The method is applied to both primitive and non-primitive binary BCH code. The block length is first recognized based on the cyclic feature under the condition of the frame length known. And then candidate polynomials are achieved which meet the restrictions. Among the candidate polynomials, the most optimal polynomial is selected based on the minimum rule of the weights sum of the syndromes. Finally, the best polynomial was factorized to get the generator polynomial recognized. Simulation results show that the method has strong capability of anti-random bit error. Besides, the algorithm proposed is very simple, so it is very practical for hardware im-plementation.展开更多
Although the distance between binary codes can be computed fast in Hamming space, linear search is not practical for large scale datasets. Therefore attention has been paid to the efficiency of performing approximate ...Although the distance between binary codes can be computed fast in Hamming space, linear search is not practical for large scale datasets. Therefore attention has been paid to the efficiency of performing approximate nearest neighbor search, in which hierarchical clustering trees (HCT) are widely used. However, HCT select cluster centers randomly and build indexes with the entire binary code, this degrades search performance. In this paper, we first propose a new clustering algorithm, which chooses cluster centers on the basis of relative distances and uses a more homogeneous partition of the dataset than HCT has to build the hierarchical clustering trees. Then, we present an algorithm to compress binary codes by extracting distinctive bits according to the standard deviation of each bit. Consequently, a new index is proposed using compressed binary codes based on hierarchical decomposition of binary spaces. Experiments conducted on reference datasets and a dataset of one billion binary codes demonstrate the effectiveness and efficiency of our method.展开更多
The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m s...The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m series to do non-coherent integration. It is indicated that the power in- creasing times of larger target sidelobe is less than the power increasing times of smaller target main- lobe because of the larger target' s pseudo-randomness. Smaller target is integrated from larger tar- get sidelobe, which strengthens the detection capability of radar for smaller targets. According to the sidelobes distributing characteristic, a method is presented in this paper to remove the estimated sidelobes mean value for signal detection after non-coherent integration. Simulation results present that the SNR of small target can be improved approximately 6. 5 dB by the proposed method.展开更多
A flexible field programmable gate array based radar signal processor is presented. The radar signal processor mainly consists of five functional modules: radar system timer, binary phase coded pulse compression(PC...A flexible field programmable gate array based radar signal processor is presented. The radar signal processor mainly consists of five functional modules: radar system timer, binary phase coded pulse compression(PC), moving target detection (MTD), constant false alarm rate (CFAR) and target dots processing. Preliminary target dots information is obtained in PC, MTD, and CFAR modules and Nios I! CPU is used for target dots combination and false sidelobe target removing. Sys- tem on programmable chip (SOPC) technique is adopted in the system in which SDRAM is used to cache data. Finally, a FPGA-based binary phase coded radar signal processor is realized and simula- tion result is given.展开更多
In the process of encoding and decoding,erasure codes over binary fields,which just need AND operations and XOR operations and therefore have a high computational efficiency,are widely used in various fields of inform...In the process of encoding and decoding,erasure codes over binary fields,which just need AND operations and XOR operations and therefore have a high computational efficiency,are widely used in various fields of information technology.A matrix decoding method is proposed in this paper.The method is a universal data reconstruction scheme for erasure codes over binary fields.Besides a pre-judgment that whether errors can be recovered,the method can rebuild sectors of loss data on a fault-tolerant storage system constructed by erasure codes for disk errors.Data reconstruction process of the new method has simple and clear steps,so it is beneficial for implementation of computer codes.And more,it can be applied to other non-binary fields easily,so it is expected that the method has an extensive application in the future.展开更多
This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary qua...This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary quasi-cyclic codes are built. Second, three classical construction methods are generalized for new codes from old such that they are suitable for constructing binary self-orthogonal codes, and 62 binary codes and six subcode chains of obtained self-orthogonal codes are designed. Third, six pure binary quantum codes are constructed from the code pairs obtained through Steane construction. There are 66 good binary codes that include 12 optimal linear codes, 45 known optimal linear codes, and nine known optimal self-orthogonal codes. The six pure binary quantum codes all achieve the performance of their additive counterparts constructed by quaternary construction and thus are known optimal codes.展开更多
A binary tree can be represented by a code reflecting the traversal of the corresponding regular binary tree in given monotonic order. A different coding scheme based on the branches of a regular binary tree with n-no...A binary tree can be represented by a code reflecting the traversal of the corresponding regular binary tree in given monotonic order. A different coding scheme based on the branches of a regular binary tree with n-nodes is proposed. It differs from the coding scheme generally used and makes no distinction between internal nodes and terminal nodes. A code of a regular binary tree with nnodes is formed by labeling the left branches by O’s and the right branches by l’s and then traversing these branches in pre-order. Root is always assumed to be on a left branch.展开更多
A decoding algorithm based on revised syndromes to decode the binary (23,12,7) Golay code is presented. The algorithm strongly depends on the algebraic properties of the code. For the algorithm, the worst complexity i...A decoding algorithm based on revised syndromes to decode the binary (23,12,7) Golay code is presented. The algorithm strongly depends on the algebraic properties of the code. For the algorithm, the worst complexity is about 683 mod2 additions, which is less than that of the algorithms available for the code, the average complexity is approximately 319 mod2 additions, which is slightly more than that of Blaum’s algorithm for the code.展开更多
A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation inf...A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation information is attained with a winner-take-all rule. Subsequently, the resulting orientation mapping array is operated by uniform local binary pattern. Accordingly, LBOCode image is achieved which contains palmprint orientation information in pixel level. Further we divide the LBOCode image into several equal-size and nonoverlapping regions, and extract the statistical code histogram from each region independently, which builds a global description of palmprint in regional level. In matching stage, the matching score between two palmprints is achieved by calculating the two spatial enhanced histograms' dissimilarity, which brings the benefit of computational simplicity. Experimental results demonstrate that the proposed method achieves more promising recognition performance compared with that of several state-of-the-art methods.展开更多
Code similarity analysis has become more popular due to its significant applicantions,including vulnerability detection,malware detection,and patch analysis.Since the source code of the software is difficult to obtain...Code similarity analysis has become more popular due to its significant applicantions,including vulnerability detection,malware detection,and patch analysis.Since the source code of the software is difficult to obtain under most circumstances,binary-level code similarity analysis(BCSA)has been paid much attention to.In recent years,many BCSA studies incorporating Al techniques focus on deriving semantic information from binary functions with code representations such as assembly code,intermediate representations,and control flow graphs to measure the similarity.However,due to the impacts of different compilers,architectures,and obfuscations,binaries compiled from the same source code may vary considerably,which becomes the major obstacle for these works to obtain robust features.In this paper,we propose a solution,named UPPC(Unleashing the Power of Pseudo-code),which leverages the pseudo-code of binary function as input,to address the binary code similarity analysis challenge,since pseudocode has higher abstraction and is platform-independent compared to binary instructions.UPPC selectively inlines the functions to capture the full function semantics across different compiler optimization levels and uses a deep pyramidal convolutional neural network to obtain the semantic embedding of the function.We evaluated UPPC on a data set containing vulnerabilities and a data set including different architectures(X86,ARM),different optimization options(O0-O3),different compilers(GCC,Clang),and four obfuscation strategies.The experimental results show that the accuracy of UPPC in function search is 33.2%higher than that of existing methods.展开更多
Cyclic codes form an important class of codes. They have very interesting algebraic structure. Furthermore, they are equivalent to many important codes, such as binary Hamming codes, Golay codes and BCH codes. Minimal...Cyclic codes form an important class of codes. They have very interesting algebraic structure. Furthermore, they are equivalent to many important codes, such as binary Hamming codes, Golay codes and BCH codes. Minimal codewords in linear codes are widely used in constructing decoding algorithms and studying linear secret sharing scheme. In this paper, we show that in the binary cyclic code all of the codewords are minimal, except 0 and 1. Then, we obtain a result about the number of minimal codewords in the binary cyclic codes.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474166 and 11604156)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161013)+2 种基金the Postdoctoral Science Foundation of China(Grant No.2016M591874)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX17 1083)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘By combining magnetics, acoustics and electrics, the magneto-acoustic-electrical tomography(MAET) proves to possess the capability of differentiating electrical impedance variation and thus improving the spatial resolution. However,the signal-to-noise ratio(SNR) of the collected MAET signal is still unsatisfactory for biological tissues with low-level electrical conductivity. In this study, the formula of MAET measurement with sinusoid-Barker coded excitation is derived and simplified for a planar piston transducer. Numerical simulations are conducted for a four-layered gel phantom with the 13-bit sinusoid-Barker coded excitation, and the performances of wave packet recovery with side-lobe suppression are improved by using the mismatched compression filter, which is also demonstrated by experimentally measuring a three-layered gel phantom. It is demonstrated that comparing with the single-cycle sinusoidal excitation, the amplitude of the driving signal can be reduced greatly with an SNR enhancement of 10 dB using the 13-bit sinusoid-Barker coded excitation. The amplitude and polarity of the wave packet filtered from the collected MAET signal can be used to achieve the conductivity derivative at the tissue boundary. In this study, we apply the sinusoid-Barker coded modulation method and the mismatched suppression scheme to MAET measurement to ensure the safety for biological tissues with improved SNR and spatial resolution, and suggest the potential applications in biomedical imaging.
文摘Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.
文摘Binary code signals have been widely used in various radars due to their simpleimplementation,but the selection of the binary codes with high comporession ratio and lowsidelobes is not solved well,because of the difficult processing in mathmatics and expensivecalculation cost.In this paper,neural computing is introduced into the field of the selection ofbinary codes and a new method based’on simulated annealing(SA)is proposed.The experimentsshow that the proposed method is able to select the optimal binary codes with much less timecost than the known methods,furhtermore the optimization selection of the binary codes versusthe calculation cost tradeoff is easier.
文摘Binary analysis, as an important foundational technology, provides support for numerous applications in the fields of software engineering and security research. With the continuous expansion of software scale and the complex evolution of software architecture, binary analysis technology is facing new challenges. To break through existing bottlenecks, researchers have applied artificial intelligence (AI) technology to the understanding and analysis of binary code. The core lies in characterizing binary code, i.e., how to use intelligent methods to generate representation vectors containing semantic information for binary code, and apply them to multiple downstream tasks of binary analysis. In this paper, we provide a comprehensive survey of recent advances in binary code representation technology, and introduce the workflow of existing research in two parts, i.e., binary code feature selection methods and binary code feature embedding methods. The feature selection section includes mainly two parts: definition and classification of features, and feature construction. First, the abstract definition and classification of features are systematically explained, and second, the process of constructing specific representations of features is introduced in detail. In the feature embedding section, based on the different intelligent semantic understanding models used, the embedding methods are classified into four categories based on the usage of text-embedding models and graph-embedding models. Finally, we summarize the overall development of existing research and provide prospects for some potential research directions related to binary code representation technology.
基金supported by Key Laboratory of Cyberspace Security,Ministry of Education,China。
文摘Transformer-based models have significantly advanced binary code similarity detection(BCSD)by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings.Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code,existing techniques predominantly depend on inserting artificial instructions,which incur high computational costs and offer limited diversity of perturbations.To address these limitations,we propose AIMA,a novel gradient-guided assembly instruction relocation method.Our method decouples the detection model into tokenization,embedding,and encoding layers to enable efficient gradient computation.Since token IDs of instructions are discrete and nondifferentiable,we compute gradients in the continuous embedding space to evaluate the influence of each token.The most critical tokens are identified by calculating the L2 norm of their embedding gradients.We then establish a mapping between instructions and their corresponding tokens to aggregate token-level importance into instructionlevel significance.To maximize adversarial impact,a sliding window algorithm selects the most influential contiguous segments for relocation,ensuring optimal perturbation with minimal length.This approach efficiently locates critical code regions without expensive search operations.The selected segments are relocated outside their original function boundaries via a jump mechanism,which preserves runtime control flow and functionality while introducing“deletion”effects in the static instruction sequence.Extensive experiments show that AIMA reduces similarity scores by up to 35.8%in state-of-the-art BCSD models.When incorporated into training data,it also enhances model robustness,achieving a 5.9%improvement in AUROC.
基金supported in part by National Natural Science Foundation of China(No.62471054)in part by National Natural Science Foundation of China(No.92467301)+3 种基金in part by the National Natural Science Foundation of China(No.62201562)in part by the National Natural Science Foundation of China(No.62371063)in part by the National Natural Science Foundation of China(No.62321001)in part by Liaoning Provincial Natural Science Foundation of China(No.2024–BSBA–51).
文摘In 5G new radio(NR), polar codes are adopted for e MBB downlink control channels where the blind detection is employed in user equipment(UE) to identify the correct downlink control information(DCI). However, different from that in the 4G LTE system, the cyclic redundancy check(CRC) in polar decoding plays both error correction and error detection roles. Consequently, the false alarm rates(FAR) may not meet the system requirements(FAR<1.52 × 10^(−5)). In this paper, to mitigate the FAR in polar code blind detection, we attach a binary classifier after the polar decoder to further remove the false alarm results and meanwhile retain the correct DCI. This classifier works by tracking the squared Euclidean distance ratio(SEDR) between the received signal and hypothesis. We derive an analytical method to fast compute proper classification threshold that is implementation-friendly in practical use. Combining the well-designed classifier, we show that some very short CRC sequences can even be used to meet the FAR requirements. This consequently reduces the CRC overhead and contributes to the system error performance improvements.
基金supported by the NSFC(11174060,11327405)the Science and Technology Support Program of Shanghai(13441901900)the Ph.D.Programs Foundation of the Ministry of Education of China(20110071130004,20130071110020)
文摘Single pulse excited ultrasonic guided wave surfers high attenuation during the propagation in long bones.This results in small amplitude and low signal-to-noise ratio(SNR)of measured signals.Thus,the Barker code excitation is introduced into long bone detection to improve the quality of received signals,due to its efficiency in increasing amplitude and SNR.Both simulation and in vitro experiment were performed,and the results were decoded by the weighted match filter(WMF) and the finite impulse response- least squares inverse filter(FIRLSIF),respectively.The comparison between the results of Barker code excitation and sine pulse excitation was presented.For 13-bit Barker code excitation,WMF produced 13 times larger amplitude than sine pulse excitation,while FIR-LSIF achieved higher peak-sidelobe-level(PSL) of -63.59 dB and better performance in noise suppression.The results show that the Barker code excited guided waves have the potential to be applied to the long bone detection.
文摘A simple and convcnient method to gain bulk acoustic wave Barker code sequence is presented and the results of the correlation are givcn. The transducer response to a unit electric pulse is used as a unit code constituting the Barker code sequence of acoustic signal. The phase precision of the code sequence as well as the fairly ideal response function are guaranteed by the high accuraey of a DATA-2020 Arbitrary Waveform Synthesizer and a DATA-6000 Universal Wavcform Analyzer. Some deviations between the experiments and thcory are caused by the transient response and timc delay characteristics of the ultrasonic tansducer.
文摘In this paper, a statistical recognition method of the binary BCH code is proposed. The method is applied to both primitive and non-primitive binary BCH code. The block length is first recognized based on the cyclic feature under the condition of the frame length known. And then candidate polynomials are achieved which meet the restrictions. Among the candidate polynomials, the most optimal polynomial is selected based on the minimum rule of the weights sum of the syndromes. Finally, the best polynomial was factorized to get the generator polynomial recognized. Simulation results show that the method has strong capability of anti-random bit error. Besides, the algorithm proposed is very simple, so it is very practical for hardware im-plementation.
文摘Although the distance between binary codes can be computed fast in Hamming space, linear search is not practical for large scale datasets. Therefore attention has been paid to the efficiency of performing approximate nearest neighbor search, in which hierarchical clustering trees (HCT) are widely used. However, HCT select cluster centers randomly and build indexes with the entire binary code, this degrades search performance. In this paper, we first propose a new clustering algorithm, which chooses cluster centers on the basis of relative distances and uses a more homogeneous partition of the dataset than HCT has to build the hierarchical clustering trees. Then, we present an algorithm to compress binary codes by extracting distinctive bits according to the standard deviation of each bit. Consequently, a new index is proposed using compressed binary codes based on hierarchical decomposition of binary spaces. Experiments conducted on reference datasets and a dataset of one billion binary codes demonstrate the effectiveness and efficiency of our method.
基金Supported by the National Natural Science Foundation of China(Youth Science Fund)(61001190)
文摘The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m series to do non-coherent integration. It is indicated that the power in- creasing times of larger target sidelobe is less than the power increasing times of smaller target main- lobe because of the larger target' s pseudo-randomness. Smaller target is integrated from larger tar- get sidelobe, which strengthens the detection capability of radar for smaller targets. According to the sidelobes distributing characteristic, a method is presented in this paper to remove the estimated sidelobes mean value for signal detection after non-coherent integration. Simulation results present that the SNR of small target can be improved approximately 6. 5 dB by the proposed method.
基金Supported by the Ministerial Level Advanced Research Foundation (SP240012)
文摘A flexible field programmable gate array based radar signal processor is presented. The radar signal processor mainly consists of five functional modules: radar system timer, binary phase coded pulse compression(PC), moving target detection (MTD), constant false alarm rate (CFAR) and target dots processing. Preliminary target dots information is obtained in PC, MTD, and CFAR modules and Nios I! CPU is used for target dots combination and false sidelobe target removing. Sys- tem on programmable chip (SOPC) technique is adopted in the system in which SDRAM is used to cache data. Finally, a FPGA-based binary phase coded radar signal processor is realized and simula- tion result is given.
基金supported by the National Natural Science Foundation of China under Grant No.61501064Sichuan Provincial Science and Technology Project under Grant No.2016GZ0122
文摘In the process of encoding and decoding,erasure codes over binary fields,which just need AND operations and XOR operations and therefore have a high computational efficiency,are widely used in various fields of information technology.A matrix decoding method is proposed in this paper.The method is a universal data reconstruction scheme for erasure codes over binary fields.Besides a pre-judgment that whether errors can be recovered,the method can rebuild sectors of loss data on a fault-tolerant storage system constructed by erasure codes for disk errors.Data reconstruction process of the new method has simple and clear steps,so it is beneficial for implementation of computer codes.And more,it can be applied to other non-binary fields easily,so it is expected that the method has an extensive application in the future.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11071255) and Science Foundation for young teachers in Science College, Air Force Engineering University. The authors are very grateful to the anonymous referees and the editors for their valuable comments and suggestions, which help to improve the manuscript significantly.
文摘This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary quasi-cyclic codes are built. Second, three classical construction methods are generalized for new codes from old such that they are suitable for constructing binary self-orthogonal codes, and 62 binary codes and six subcode chains of obtained self-orthogonal codes are designed. Third, six pure binary quantum codes are constructed from the code pairs obtained through Steane construction. There are 66 good binary codes that include 12 optimal linear codes, 45 known optimal linear codes, and nine known optimal self-orthogonal codes. The six pure binary quantum codes all achieve the performance of their additive counterparts constructed by quaternary construction and thus are known optimal codes.
文摘A binary tree can be represented by a code reflecting the traversal of the corresponding regular binary tree in given monotonic order. A different coding scheme based on the branches of a regular binary tree with n-nodes is proposed. It differs from the coding scheme generally used and makes no distinction between internal nodes and terminal nodes. A code of a regular binary tree with nnodes is formed by labeling the left branches by O’s and the right branches by l’s and then traversing these branches in pre-order. Root is always assumed to be on a left branch.
基金Supported by the National Natural Science Foundation of China
文摘A decoding algorithm based on revised syndromes to decode the binary (23,12,7) Golay code is presented. The algorithm strongly depends on the algebraic properties of the code. For the algorithm, the worst complexity is about 683 mod2 additions, which is less than that of the algorithms available for the code, the average complexity is approximately 319 mod2 additions, which is slightly more than that of Blaum’s algorithm for the code.
基金supported partly by the National Grand Fundamental Research 973 Program of China under Grant No. 2004CB318005the Doctoral Candidate Outstanding Innovation Foundation under Grant No.141092522the Fundamental Research Funds under Grant No.2009YJS025
文摘A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation information is attained with a winner-take-all rule. Subsequently, the resulting orientation mapping array is operated by uniform local binary pattern. Accordingly, LBOCode image is achieved which contains palmprint orientation information in pixel level. Further we divide the LBOCode image into several equal-size and nonoverlapping regions, and extract the statistical code histogram from each region independently, which builds a global description of palmprint in regional level. In matching stage, the matching score between two palmprints is achieved by calculating the two spatial enhanced histograms' dissimilarity, which brings the benefit of computational simplicity. Experimental results demonstrate that the proposed method achieves more promising recognition performance compared with that of several state-of-the-art methods.
文摘Code similarity analysis has become more popular due to its significant applicantions,including vulnerability detection,malware detection,and patch analysis.Since the source code of the software is difficult to obtain under most circumstances,binary-level code similarity analysis(BCSA)has been paid much attention to.In recent years,many BCSA studies incorporating Al techniques focus on deriving semantic information from binary functions with code representations such as assembly code,intermediate representations,and control flow graphs to measure the similarity.However,due to the impacts of different compilers,architectures,and obfuscations,binaries compiled from the same source code may vary considerably,which becomes the major obstacle for these works to obtain robust features.In this paper,we propose a solution,named UPPC(Unleashing the Power of Pseudo-code),which leverages the pseudo-code of binary function as input,to address the binary code similarity analysis challenge,since pseudocode has higher abstraction and is platform-independent compared to binary instructions.UPPC selectively inlines the functions to capture the full function semantics across different compiler optimization levels and uses a deep pyramidal convolutional neural network to obtain the semantic embedding of the function.We evaluated UPPC on a data set containing vulnerabilities and a data set including different architectures(X86,ARM),different optimization options(O0-O3),different compilers(GCC,Clang),and four obfuscation strategies.The experimental results show that the accuracy of UPPC in function search is 33.2%higher than that of existing methods.
文摘Cyclic codes form an important class of codes. They have very interesting algebraic structure. Furthermore, they are equivalent to many important codes, such as binary Hamming codes, Golay codes and BCH codes. Minimal codewords in linear codes are widely used in constructing decoding algorithms and studying linear secret sharing scheme. In this paper, we show that in the binary cyclic code all of the codewords are minimal, except 0 and 1. Then, we obtain a result about the number of minimal codewords in the binary cyclic codes.