To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration signific...To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future.展开更多
W-type barium-nickel ferrite(BaNi_(2)Fe_(16)O_(27))is a highly promising material for electromagnetic wave(EMW)absorption be-cause of its magnetic loss capability for EMW,low cost,large-scale production potential,high...W-type barium-nickel ferrite(BaNi_(2)Fe_(16)O_(27))is a highly promising material for electromagnetic wave(EMW)absorption be-cause of its magnetic loss capability for EMW,low cost,large-scale production potential,high-temperature resistance,and excellent chemical stability.However,the poor dielectric loss of magnetic ferrites hampers their utilization,hindering enhancement in their EMW-absorption performance.Developing efficient strategies that improve the EMW-absorption performance of ferrite is highly desired but re-mains challenging.Here,an efficient strategy substituting Ba^(2+)with rare earth La^(3+)in W-type ferrite was proposed for the preparation of novel La-substituted ferrites(Ba_(1-x)LaxNi_(2)Fe_(15.4)O_(27)).The influences of La^(3+)substitution on ferrites’EMW-absorption performance and the dissipative mechanism toward EMW were systematically explored and discussed.La^(3+)efficiently induced lattice defects,enhanced defect-induced polarization,and slightly reduced the ferrites’bandgap,enhancing the dielectric properties of the ferrites.La^(3+)also enhanced the ferromagnetic resonance loss and strengthened magnetic properties.These effects considerably improved the EMW-absorption perform-ance of Ba_(1-x)LaxNi_(2)Fe_(15.4)O_(27)compared with pure W-type ferrites.When x=0.2,the best EMW-absorption performance was achieved with a minimum reflection loss of-55.6 dB and effective absorption bandwidth(EAB)of 3.44 GHz.展开更多
The multifunctional characteristics of barium zinc vanadate(BaZnV_(2)O_(7))nanoparticles(BZV NPs)were explored in this study,focusing on their photocatalytic activity,supercapacitor performance,and sensing abilities.X...The multifunctional characteristics of barium zinc vanadate(BaZnV_(2)O_(7))nanoparticles(BZV NPs)were explored in this study,focusing on their photocatalytic activity,supercapacitor performance,and sensing abilities.X-ray diffraction analysis confirmed that the crystallites were 40.3 nm in size,whereas ultraviolet visible diffuse reflectance spectroscopy revealed an energy bandgap of 5.28 eV.Functional groups,elemental composition,and morphology were assessed using Fourier transform infrared spectroscopy,energy-dispers-ive X-ray spectroscopy,and scanning electron microscopy,respectively.The photocatalytic efficiency of the BZV NPs was evaluated at various catalyst dosages,dye concentrations,and pH levels,for the degradation of acid black-52(AB-52)dye under UV light.Cyclic voltammetry and galvanostatic charge-discharge analyses were performed to determine the energy storage and cyclic stability of the BZV-NP-modified carbon paste electrode.In addition,a novel electrochemical sensor based on BZV was developed to accurately detect the concentration of biomolecules and chemical drugs.BZV nanoparticles exhibited remarkable photocatalytic dye degradation up to 80.4%,indicating their application in waste water treatment.The BZV-NP-modified carbon paste electrode exhibited a superior specific capacit-ance of 714.15 F·g−1 with excellent cycling stability over 1000 cycles.The electrodes efficiently detected biomolecules such as ascorbic acid and uric acid,chemical drugs including paracetamol and ibuprofen,and heavy metals such as mercury,cobalt,and cadmium in the concentration range of 1-5 mM.The limit of detection(LOD)was measured for all analytes,and the electrode exhibited high sensitivity.These multifunctional properties render BZV promising material for energy storage and environmental monitoring applications.展开更多
This study presents a detailed comparative analysis of three electron transport layer(ETL)materials for perovskite solar cells(PSCs),namely titanium dioxide(TiO_(2)),barium titanate(BaTiO_(3)or BTO),and strontium-dope...This study presents a detailed comparative analysis of three electron transport layer(ETL)materials for perovskite solar cells(PSCs),namely titanium dioxide(TiO_(2)),barium titanate(BaTiO_(3)or BTO),and strontium-doped barium titan-ate(Ba_(1−x)Sr_(x)TiO_(3)or BST),and their impact on the quantum efficiency(QE)and power conversion efficiency(PCE)of CH_(3)NH_(3)PbI_(3)(MAPbI_(3))PSCs.The optimized structure demonstrates that devices utilizing BST as an ETL achieved the highest PCE of 29.85%,exhibiting superior thermal stability with the lowest temperature coefficient of−0.43%/K.This temperature-induced degradation is comparable to that of commercially available silicon cells.Furthermore,BST-based ETLs show 29.50%and 26.48%higher PCE than those of TiO_(2)-based and BTO-based ETLs.The enhanced internal QE and favorable current density–voltage(J–V)characteristics of BST compared with those of TiO_(2)and BTO are attributed to its improved charge carrier separation,reduced recombination rates,and robust electrical characteristics under varied environmental conditions.Furthermore,the electric field and generation rate of the BST-based ETLs show a more favorable distribution than those of the TiO_(2)-based and BTO-based ETLs.These findings provide significant insights into the role of different ETLs in enhancing QE,indicating that BST is a superior ETL that enhances both the efficiency and stability of PSCs.This study contributes to the understanding of how perovskite-structured ETLs can be used to design and optimize highly efficient and stable photovoltaic devices.展开更多
High performance is always the research objective in developing triboelectric nanogenerators(TENGs)for future versatile applications.In this study,flexible triboelectric membranes were prepared based on polyimide(PI)m...High performance is always the research objective in developing triboelectric nanogenerators(TENGs)for future versatile applications.In this study,flexible triboelectric membranes were prepared based on polyimide(PI)membranes doped with barium titanate(BTO)nanoparticles and multi-walled carbon nanotubes(MWCNTs).The piezoelectric BTO nanoparticles were incorporated to boost the electric outputs by the synergistic effect of piezoelectricity and triboelectricity and MWCNTs were incorporated to provide a microcapacitor structure for enhancing the performance of TENGs.When the mass fraction of the BTO nanoparticle was 10%and the mass fraction of the MWCNT was 0.1%,the corresponding TENG achieved optimum electric outputs(an open-circuit voltage of around 65 V,a short-circuit current of about 20.0μA and a transferred charge of about 25.0 nC),much higher than those of the TENG with a single PI membrane.The TENG is potentially used to supply energy for commercial light-emitting diodes and as self-powered sensors to monitor human physical training conditions.This research provides a guideline for developing TENGs with high performance,which is crucial for their long-term use.展开更多
Integrated electro-optic tuning devices are essential parts of optical communication,sensors,and optical machine learning.Among the available materials,silicon is the most promising for on-chip signal processing and n...Integrated electro-optic tuning devices are essential parts of optical communication,sensors,and optical machine learning.Among the available materials,silicon is the most promising for on-chip signal processing and networks.However,silicon is limited owing to the absence of efficient Pockels electro-optic tuning.Herein,we propose a new hybrid silicon-barium-titanate(Si-BTO)integrated photonic platform,in which the BTO thin film is deposited by the chemical solution deposition(CSD)method.A tunable racetrack resonator is demonstrated to confirm the Pockels electro-optic tuning potential of the BTO thin film.The hybrid racetrack resonator has a tuning efficiency of 6.5 pm∕V and a high-power efficiency of 2.16 pm∕nW.Moreover,the intrinsic quality factor of the fabricated racetrack resonator is 48,000,which is the highest in hybrid Si-BTO platforms,to the best of our knowledge.The high-speed test verifies the stability of the racetrack resonator.The hybrid Si-BTO technology based on the CSD method has the advantages of low equipment cost and simple fabrication process,which holds promise for low-power electro-optic tuning devices.展开更多
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco...In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.展开更多
The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray d...The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.展开更多
Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted ba...Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted barium ferrite annealing at 1000 ℃, the vibrating sample magnetometer (VSM) measurement manifested that the optimum magnetic properties formation temperature of Al-substituted barium ferrite was 1 100 ℃. The data from X-ray diffractometer (XRD) showed that with increasing x, the lattice constants (a and c) decreased as well as the unit-cell volume Vcell. Magnetic measurement of non-substituted and Al-substituted powders annealed from 900 ℃ to 1 200 ℃ exhibited that the maximum magnetization M (10 kOe), the remanent magnetization Mr and the coercivity Hc depended strongly on the chemical composition of powder as well as the annealing temperature. When annealing at 1 100 ℃, BaAl0.5Fe11.5O19 of high coercivity Hc (6584 Oe) was produced. Meanwhile, M (10 kOe) and Mr were 42.83 emu/g and 25.65 emu/g, respectively.展开更多
A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement ...A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement is obtained by the geometrical relation of the triangle theory. In this application, high field electrostrictive strains of barium titanate/polyurethane elastomer composite materials are measured. The electrostrictive strain is evaluated when the application of an electric field is repeated, and then the electrostrictive coefficient of the sample is obtained. To improve the measuring accuracy, the bilinear interpolation of gray value is used to obtain the sub-pixel gray value. The results are compared with those obtained from the surface fitting algorithm. The experimental results demonstrate that the electrostrictive response of polyurethane increases with the introduction of barium titanate into polyurethane. And by using the DSCM, the measurement of the characteristic of electrostriction can be done quickly and accurately. The DSCM provides an effective tool for the evaluation of electrostrictive response.展开更多
W-type barium ferrites doped with Gd^3+,Ba1-xGdx(Zn0.3Co0.7)2Fe16O27(x = 0,0.05,0.10,0.15,0.20),were prepared by a sol-gel method.The effects of Gd^3+ substitution on their microstructure,electromagnetic propert...W-type barium ferrites doped with Gd^3+,Ba1-xGdx(Zn0.3Co0.7)2Fe16O27(x = 0,0.05,0.10,0.15,0.20),were prepared by a sol-gel method.The effects of Gd^3+ substitution on their microstructure,electromagnetic properties and microwave absorptive behavior were analyzed.The XRD patterns showed the single phase of W-type barium ferrite when x ≤ 0.15.Microwave electromagnetic properties of samples were studied at the frequency range from 2 GHz to 18 GHz using a network analyzer(Agilent 8722ET).The complex permittivity ε(ε',ε'') increased gradually when x ≤ 0.10,but it decreased as x = 0.15.The real permeability(μ') decreased with the increase of Gd^3+ content,while the imaginary permeability(μ'') increased when x ≤ 0.10.All these reasons were discussed using the electromagnetic theory.Furthermore,the ferrite-epoxy compound coating materials with 80 wt.% of Ba0.9Gd0.1(Zn0.3Co0.7)2Fe16O27 were prepared to measure the microwave absorbing properties.The maximum of reflection loss(RL) reached about-27 dB and RL was below-10 dB in the frequency range of 8-18 GHz when the thickness was 1.92 mm.展开更多
Er3+-substituted W-type barium ferrites Ba1-xErx(Zn0.3Co0.7)2Fe16O27 (x=0.00, 0.05, 0.10, 0.15, 0.20) were synthesized by polymer adsorbent combustion method. Samples were characterized by X-ray diffraction analysis (...Er3+-substituted W-type barium ferrites Ba1-xErx(Zn0.3Co0.7)2Fe16O27 (x=0.00, 0.05, 0.10, 0.15, 0.20) were synthesized by polymer adsorbent combustion method. Samples were characterized by X-ray diffraction analysis (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and network analyzer to investigate the relationships among Er3+ concentration, crystal structure, surface morphology and electromagnetic properties. All the XRD patterns showed pure phase of W-type barium ferrite when x≤0.15, while the impurity phase of ErFeO3 appeared when x=0.20. The pure W-type barium ferrite showed a hexagonal flake shape. In addition, the microwave electromagnetic properties of samples were analyzed in the frequency range of 2-18 GHz. It was indicated that the electromagnetic properties were significantly improved when Er3+ doping content was 0.10. The reasons were also discussed using electromagnetic theory. The optimized ferrite exhibited excellent microwave absorption performance. The maximum of reflection loss (RL) reached about-27.4 dB and RL was below-10 dB at the frequency range from 8.4 GHz to 18 GHz, when the thickness was 2.6 mm.展开更多
The influence of barium addition to a Ni/Al2O3 catalyst on the reaction intermediates formed,the activity,resistance of the catalyst to coking,and properties of the coke formed after acetic acid steam reforming were i...The influence of barium addition to a Ni/Al2O3 catalyst on the reaction intermediates formed,the activity,resistance of the catalyst to coking,and properties of the coke formed after acetic acid steam reforming were investigated in this study.The results showed the drastic effects of barium addition on the physicochemical properties and performances of the catalyst.The solid-phase reaction between alumina and BaO formed BaAl2O4,which re-constructed the alumina structure,resulting in a decrease in the specific surface area and an increase in the resistance of metallic Ni to sintering.The addition of barium was also beneficial for enhancing the catalytic activity,resulting from the changed catalytic reaction network.The in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study of the acetic acid steam reforming indicated that barium could effectively suppress the accumulation of the reaction intermediates of carbonyl,formate,and C=C functional groups on the catalyst surface,attributed to its relatively high ability to cause the gasification of these species.In addition,coking was considerably more significant over the Ba-Ni/Al2O3 catalyst.Moreover,the Ba-Ni/Al2O3 catalyst was more stable than the Ni/Al2O3catalyst,owing to the distinct forms of coke formed (carbon nanotube form over the Ba-Ni/Al2O3 catalyst,and the amorphous form over the Ni/Al2O3 catalyst).展开更多
Barium modified Co/Al2O3 catalysts were prepared by incipient wetness impregnation.The catalysts were characterized by XRD,TPD and DRIFTS.The catalytic activity for Fischer-Tropsch synthesis was measured in a continuo...Barium modified Co/Al2O3 catalysts were prepared by incipient wetness impregnation.The catalysts were characterized by XRD,TPD and DRIFTS.The catalytic activity for Fischer-Tropsch synthesis was measured in a continuously stirred tank reactor.It was found that small amounts of BaO(≤2 wt%) improved the cobalt reducibility,which led to more cobalt active sites on the catalyst surface,and then resulted in higher CO conversion and C5+ selectivity.However,for the catalysts with high BaO loadings negative effects on the catalytic activity and selectivity for high hydrocarbons were observed because of low cobalt reducibility.展开更多
Barium ferrite micro-/nanofibers with special morphology,nanowires with diameters of 100 nm,nanoribbons with diameters of 1μm,and nanotubes with outer diameter of about 300 nm while inner diameter of 100 nm were succ...Barium ferrite micro-/nanofibers with special morphology,nanowires with diameters of 100 nm,nanoribbons with diameters of 1μm,and nanotubes with outer diameter of about 300 nm while inner diameter of 100 nm were successfully prepared via electrospinning using different solvents(dimethyl formamide(DMF),solutions of deionized water and ethyl alcohol,and solutions of deionized water and acetic acid,respectively).The barium ferrite micro-/nanofibers were characterized by scanning electron microscope(SEM),X-ray diffraction analysis(XRD),and vibration sample magnetometer(VSM).The results demonstrate that the pure BaFe12O19 ferrite phase is successfully formed.And the SEM results show excellent morphologies.The magnetic hysteresis loops demonstrate that their magnetic properties are quite different with different morphologies.The specific saturation magnetization is approximately the same(46.12-49.17 A·m^2·kg^-1),but the coercivity of the BaFe12O19 increases from wires(190.08 kA·m^-1),ribbons(224.16 kA·m^-1) to tubes(258.88 kA·m^-1).展开更多
The deoxidation behaviors of alloys bearing barium in pipe steel were researched with MgO crucible under argon atmosphere in MoSi2 furnace at 1 873 K.The total oxygen contents of molten steel,the distribution,size and...The deoxidation behaviors of alloys bearing barium in pipe steel were researched with MgO crucible under argon atmosphere in MoSi2 furnace at 1 873 K.The total oxygen contents of molten steel,the distribution,size and morphology of deoxidation products in the steel were surveyed.The metamorphic mechanism for deoxidation products of alloy bearing barium was also discussed.The results show that applying alloy bearing barium to the pipe steel,very low total oxygen contents can be obtained,and deoxidation products,which easily float up from molten steel,can be changed into globular shape and uniformly distributed in steel.The equilibrium time of total oxygen is about 25 min,and the terminal total oxygen contents range from 0.002 0%to 0.002 2% after treating with SiCa wire.The best deoxidizers are SiAlBaCa and SiAlBaCaSr.展开更多
Barium carbonate particles were prepared by using homogeneous precipitation method and co-precipitation method respectively. Through adding different crystalline controlling modifiers, Barium carbonate particles in fi...Barium carbonate particles were prepared by using homogeneous precipitation method and co-precipitation method respectively. Through adding different crystalline controlling modifiers, Barium carbonate particles in five different shapes including linear, needle-like, pillarlike, sphere-like and dumbbell-like were synthesized. These particles were characterized by SEM and XRD, and their synthetic mechanism was discussed in this paper.展开更多
La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem- perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrat...La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem- perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were employed to investigate the influence of La-Co on the structure and magnetic properties of the samples. By sintering at 1173 K for 6 h in air, single phase M-type barium ferrites with chemical composition of Ba(LaCo)xFel〉z^Oj9 (x=0.0~).5) were formed. M-H curves showed that the magnetic properties of barium ferrites were obviously effected by La-Co substitution. The saturation magnetization (Ms) and coercivity (He) reached the maximum value of 65.15 AmZ/kg and 4165 Oe, respectively. This behavior was attributed to the sites of La-Co substitutions and the particles size. SEM revealed that the shape of ferrite particles was influenced by La-Co substitution.展开更多
A new two-dimensional (2D) barium(AA) coordination polymer [Ba(3-NPA)]n (1) has been obtained by the hydro/solvothermal reaction of the corresponding metal salt with 3-nitrophthalic acid (3-NPAH2). Compound ...A new two-dimensional (2D) barium(AA) coordination polymer [Ba(3-NPA)]n (1) has been obtained by the hydro/solvothermal reaction of the corresponding metal salt with 3-nitrophthalic acid (3-NPAH2). Compound 1 was characterized by infrared spectrum, elemental analysis, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction analysis. Compound 1 crystallizes in triclinic, space group Pī with a = 4.9611(3), b = 7.2599(4), c = 12.9463(8) A, α = 89.0892(2), β = 80.546(2), γ = 73.211(2)°, V = 440.1(5) A3, Z = 2, C8H3BaNO6, Mr = 346.45, Dc = 2.614 g·cm^-3, μ = 4.526 mm^-1, S = 1.035, F(000) = 324, R = 0.0168 and wR = 0.0471 for 1712 observed reflections with I 〉 2σ(I). (Aρ)max = 0.458, (Aρ)min = -0.565 e·A-3 and (A/σ)max = 0.001. In compound 1, each 3-NPA^2- ligand links six Ba(II) ions and each Ba(II) ion attaches to six 3-NPA^2- ligands to form an inorganic layer structure in the ab-plane. The phenyl groups of 3-NPA^2- ligands are grafted on the two sides of the inorganic layer, resulting in a two-dimensional (2D) layered structure. Furthermore, the thermal stability and luminescent properties of compound 1 have also been investigated in detail.展开更多
AIM:To determine the pattern and distribution of colonic diverticulosis in Thai adults.METHODS:A review of the computerized radiology database for double contrast barium enema(DCBE)in Thai adults was performed at the ...AIM:To determine the pattern and distribution of colonic diverticulosis in Thai adults.METHODS:A review of the computerized radiology database for double contrast barium enema(DCBE)in Thai adults was performed at the Faculty of Medicine Siriraj Hospital,Mahidol University,Bangkok,Thailand.Incomplete studies and DCBE examinations performed in non-Thai individuals were excluded.The pattern and distribution of colonic diverticulosis detected during DCBE studies from June 2009 to October 2011 were determined.The occurrence of solitary cecal diverticulum,rectal diverticulum and giant diverticulum were reported.Factors influencing the presence of colonic diverticulosis were evaluated.RESULTS:A total of 2877 suitable DCBE examinations were retrospectively reviewed.The mean age of patients was 59.8±14.7 years.Of these patients,1778(61.8%)were female and 700(24.3%)were asymptomatic.Colonic diverticulosis was identified in 820patients(28.5%).Right-sided diverticulosis(641 cases;22.3%)was more frequently reported than left-sided diverticulosis(383 cases;13.3%).Pancolonic diverticulosis was found in 98 cases(3.4%).The occurrence of solitary cecal diverticulum,rectal diverticulum and giant diverticulum were 1.5%(42 cases),0.4%(12 cases),and 0.03%(1 case),respectively.There was no significant difference in the overall occurrence of colonic diverticulosis between male and female patients(28.3%vs 28.6%,P=0.85).DCBE examinations performed in patients with some gastrointestinal symptoms revealed the frequent occurrence of colonic diverticulosis compared with those performed in asymptomatic individuals(29.5%vs 25.3%,P=0.03).Change in bowel habit was strongly associated with the presence of diverticulosis(a relative risk of 1.39;P=0.005).The presence of diverticulosis was not correlated with age in symptomatic patients or asymptomatic individuals(P>0.05).CONCLUSION:Colonic diverticulosis was identified in28.5%of DCBE examinations in Thai adults.There was no association between the presence of diverticulosis and gender or age.展开更多
基金supported by the National Key R&D Program of China(Nos.2022YFB3504804 and 2023YFF0718303)the National Natural Science Foundation of China(Nos.51871219,52071324,52031014,and 52401255)+1 种基金Science and Technology Project of Shenyang City(No.22-101-0-27)Liaoning Institute of Science and Technology Doctoral Initiation Fund Project(No.2307B19).
文摘To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future.
基金financially supported by the National Key R&D Program of China(No.2021YFB3502500)the Natur-al Science Foundation of Shandong Province,China(No.2022HYYQ-014)+5 种基金the“20 Clauses about Colleges and Uni-versities(new)”(Independent Training of Innovation Team)Program of Jinan,China(No.2021GXRC036)the Provin-cial Key Research and Development Program of Shandong,China(No.2021ZLGX01)the National Natural Science Foundation of China(No.22375115)the Joint Laboratory project of Electromagnetic Structure Technology(No.637-2022-70-F-037)the Discipline Construction Expenditure for Distinguished Young Scholars of Shandong University,China(No.31370089963141)the Qilu Young Scholar Program of Shandong University,China(No.31370082163127).
文摘W-type barium-nickel ferrite(BaNi_(2)Fe_(16)O_(27))is a highly promising material for electromagnetic wave(EMW)absorption be-cause of its magnetic loss capability for EMW,low cost,large-scale production potential,high-temperature resistance,and excellent chemical stability.However,the poor dielectric loss of magnetic ferrites hampers their utilization,hindering enhancement in their EMW-absorption performance.Developing efficient strategies that improve the EMW-absorption performance of ferrite is highly desired but re-mains challenging.Here,an efficient strategy substituting Ba^(2+)with rare earth La^(3+)in W-type ferrite was proposed for the preparation of novel La-substituted ferrites(Ba_(1-x)LaxNi_(2)Fe_(15.4)O_(27)).The influences of La^(3+)substitution on ferrites’EMW-absorption performance and the dissipative mechanism toward EMW were systematically explored and discussed.La^(3+)efficiently induced lattice defects,enhanced defect-induced polarization,and slightly reduced the ferrites’bandgap,enhancing the dielectric properties of the ferrites.La^(3+)also enhanced the ferromagnetic resonance loss and strengthened magnetic properties.These effects considerably improved the EMW-absorption perform-ance of Ba_(1-x)LaxNi_(2)Fe_(15.4)O_(27)compared with pure W-type ferrites.When x=0.2,the best EMW-absorption performance was achieved with a minimum reflection loss of-55.6 dB and effective absorption bandwidth(EAB)of 3.44 GHz.
基金fund provided by the Ongoing Research Funding program-Research Chairs(No.ORF-RC-2025-1609),King Saud University,Riyadh,Saudi Arabia.
文摘The multifunctional characteristics of barium zinc vanadate(BaZnV_(2)O_(7))nanoparticles(BZV NPs)were explored in this study,focusing on their photocatalytic activity,supercapacitor performance,and sensing abilities.X-ray diffraction analysis confirmed that the crystallites were 40.3 nm in size,whereas ultraviolet visible diffuse reflectance spectroscopy revealed an energy bandgap of 5.28 eV.Functional groups,elemental composition,and morphology were assessed using Fourier transform infrared spectroscopy,energy-dispers-ive X-ray spectroscopy,and scanning electron microscopy,respectively.The photocatalytic efficiency of the BZV NPs was evaluated at various catalyst dosages,dye concentrations,and pH levels,for the degradation of acid black-52(AB-52)dye under UV light.Cyclic voltammetry and galvanostatic charge-discharge analyses were performed to determine the energy storage and cyclic stability of the BZV-NP-modified carbon paste electrode.In addition,a novel electrochemical sensor based on BZV was developed to accurately detect the concentration of biomolecules and chemical drugs.BZV nanoparticles exhibited remarkable photocatalytic dye degradation up to 80.4%,indicating their application in waste water treatment.The BZV-NP-modified carbon paste electrode exhibited a superior specific capacit-ance of 714.15 F·g−1 with excellent cycling stability over 1000 cycles.The electrodes efficiently detected biomolecules such as ascorbic acid and uric acid,chemical drugs including paracetamol and ibuprofen,and heavy metals such as mercury,cobalt,and cadmium in the concentration range of 1-5 mM.The limit of detection(LOD)was measured for all analytes,and the electrode exhibited high sensitivity.These multifunctional properties render BZV promising material for energy storage and environmental monitoring applications.
基金funded by the Geran Universiti Penyelidikan(GUP),under the grant number GUP-2022-011 funded by the Universiti Kebangsaan Malaysia。
文摘This study presents a detailed comparative analysis of three electron transport layer(ETL)materials for perovskite solar cells(PSCs),namely titanium dioxide(TiO_(2)),barium titanate(BaTiO_(3)or BTO),and strontium-doped barium titan-ate(Ba_(1−x)Sr_(x)TiO_(3)or BST),and their impact on the quantum efficiency(QE)and power conversion efficiency(PCE)of CH_(3)NH_(3)PbI_(3)(MAPbI_(3))PSCs.The optimized structure demonstrates that devices utilizing BST as an ETL achieved the highest PCE of 29.85%,exhibiting superior thermal stability with the lowest temperature coefficient of−0.43%/K.This temperature-induced degradation is comparable to that of commercially available silicon cells.Furthermore,BST-based ETLs show 29.50%and 26.48%higher PCE than those of TiO_(2)-based and BTO-based ETLs.The enhanced internal QE and favorable current density–voltage(J–V)characteristics of BST compared with those of TiO_(2)and BTO are attributed to its improved charge carrier separation,reduced recombination rates,and robust electrical characteristics under varied environmental conditions.Furthermore,the electric field and generation rate of the BST-based ETLs show a more favorable distribution than those of the TiO_(2)-based and BTO-based ETLs.These findings provide significant insights into the role of different ETLs in enhancing QE,indicating that BST is a superior ETL that enhances both the efficiency and stability of PSCs.This study contributes to the understanding of how perovskite-structured ETLs can be used to design and optimize highly efficient and stable photovoltaic devices.
基金National Natural Science Foundation of China(No.52103267)。
文摘High performance is always the research objective in developing triboelectric nanogenerators(TENGs)for future versatile applications.In this study,flexible triboelectric membranes were prepared based on polyimide(PI)membranes doped with barium titanate(BTO)nanoparticles and multi-walled carbon nanotubes(MWCNTs).The piezoelectric BTO nanoparticles were incorporated to boost the electric outputs by the synergistic effect of piezoelectricity and triboelectricity and MWCNTs were incorporated to provide a microcapacitor structure for enhancing the performance of TENGs.When the mass fraction of the BTO nanoparticle was 10%and the mass fraction of the MWCNT was 0.1%,the corresponding TENG achieved optimum electric outputs(an open-circuit voltage of around 65 V,a short-circuit current of about 20.0μA and a transferred charge of about 25.0 nC),much higher than those of the TENG with a single PI membrane.The TENG is potentially used to supply energy for commercial light-emitting diodes and as self-powered sensors to monitor human physical training conditions.This research provides a guideline for developing TENGs with high performance,which is crucial for their long-term use.
基金supported by the National Key R&D Program of China(Grant No.2020YFB2206101)the National Natural Science Foundation of China(Grant Nos.62335014,62035016,61975115,and 61835008).
文摘Integrated electro-optic tuning devices are essential parts of optical communication,sensors,and optical machine learning.Among the available materials,silicon is the most promising for on-chip signal processing and networks.However,silicon is limited owing to the absence of efficient Pockels electro-optic tuning.Herein,we propose a new hybrid silicon-barium-titanate(Si-BTO)integrated photonic platform,in which the BTO thin film is deposited by the chemical solution deposition(CSD)method.A tunable racetrack resonator is demonstrated to confirm the Pockels electro-optic tuning potential of the BTO thin film.The hybrid racetrack resonator has a tuning efficiency of 6.5 pm∕V and a high-power efficiency of 2.16 pm∕nW.Moreover,the intrinsic quality factor of the fabricated racetrack resonator is 48,000,which is the highest in hybrid Si-BTO platforms,to the best of our knowledge.The high-speed test verifies the stability of the racetrack resonator.The hybrid Si-BTO technology based on the CSD method has the advantages of low equipment cost and simple fabrication process,which holds promise for low-power electro-optic tuning devices.
基金The National Natural Science Foundation of China(No.51205282)
文摘In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.
基金Project (11KJB430007) supported by the University Natural Science Research Program of Jiangsu Province, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.0452nm049)
文摘Al-substituted barium ferrite powders were synthesized using the sol-gel auto-combustion method according to the molecular formula BaAlxFe12-xO19 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0). Compared with non-substituted barium ferrite annealing at 1000 ℃, the vibrating sample magnetometer (VSM) measurement manifested that the optimum magnetic properties formation temperature of Al-substituted barium ferrite was 1 100 ℃. The data from X-ray diffractometer (XRD) showed that with increasing x, the lattice constants (a and c) decreased as well as the unit-cell volume Vcell. Magnetic measurement of non-substituted and Al-substituted powders annealed from 900 ℃ to 1 200 ℃ exhibited that the maximum magnetization M (10 kOe), the remanent magnetization Mr and the coercivity Hc depended strongly on the chemical composition of powder as well as the annealing temperature. When annealing at 1 100 ℃, BaAl0.5Fe11.5O19 of high coercivity Hc (6584 Oe) was produced. Meanwhile, M (10 kOe) and Mr were 42.83 emu/g and 25.65 emu/g, respectively.
基金Foundation items:The National Natural Science Foundation of China(No.10472026)the Natural Science Foundation of Jiangsu Province(No.BK2003063).
文摘A new method for measuring the characteristic of electrostriction by a digital speckle correlation method (DSCM) is presented. The in-plane displacement is obtained by using the DSCM, and the out-plane displacement is obtained by the geometrical relation of the triangle theory. In this application, high field electrostrictive strains of barium titanate/polyurethane elastomer composite materials are measured. The electrostrictive strain is evaluated when the application of an electric field is repeated, and then the electrostrictive coefficient of the sample is obtained. To improve the measuring accuracy, the bilinear interpolation of gray value is used to obtain the sub-pixel gray value. The results are compared with those obtained from the surface fitting algorithm. The experimental results demonstrate that the electrostrictive response of polyurethane increases with the introduction of barium titanate into polyurethane. And by using the DSCM, the measurement of the characteristic of electrostriction can be done quickly and accurately. The DSCM provides an effective tool for the evaluation of electrostrictive response.
基金supported by the Pre-research Foundation of CPLA General Equipment Department (NO.9140A××××6401)
文摘W-type barium ferrites doped with Gd^3+,Ba1-xGdx(Zn0.3Co0.7)2Fe16O27(x = 0,0.05,0.10,0.15,0.20),were prepared by a sol-gel method.The effects of Gd^3+ substitution on their microstructure,electromagnetic properties and microwave absorptive behavior were analyzed.The XRD patterns showed the single phase of W-type barium ferrite when x ≤ 0.15.Microwave electromagnetic properties of samples were studied at the frequency range from 2 GHz to 18 GHz using a network analyzer(Agilent 8722ET).The complex permittivity ε(ε',ε'') increased gradually when x ≤ 0.10,but it decreased as x = 0.15.The real permeability(μ') decreased with the increase of Gd^3+ content,while the imaginary permeability(μ'') increased when x ≤ 0.10.All these reasons were discussed using the electromagnetic theory.Furthermore,the ferrite-epoxy compound coating materials with 80 wt.% of Ba0.9Gd0.1(Zn0.3Co0.7)2Fe16O27 were prepared to measure the microwave absorbing properties.The maximum of reflection loss(RL) reached about-27 dB and RL was below-10 dB in the frequency range of 8-18 GHz when the thickness was 1.92 mm.
基金Project supported by the Advanced Project of The General Reserve Department of PLA (9140A××××6401)
文摘Er3+-substituted W-type barium ferrites Ba1-xErx(Zn0.3Co0.7)2Fe16O27 (x=0.00, 0.05, 0.10, 0.15, 0.20) were synthesized by polymer adsorbent combustion method. Samples were characterized by X-ray diffraction analysis (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and network analyzer to investigate the relationships among Er3+ concentration, crystal structure, surface morphology and electromagnetic properties. All the XRD patterns showed pure phase of W-type barium ferrite when x≤0.15, while the impurity phase of ErFeO3 appeared when x=0.20. The pure W-type barium ferrite showed a hexagonal flake shape. In addition, the microwave electromagnetic properties of samples were analyzed in the frequency range of 2-18 GHz. It was indicated that the electromagnetic properties were significantly improved when Er3+ doping content was 0.10. The reasons were also discussed using electromagnetic theory. The optimized ferrite exhibited excellent microwave absorption performance. The maximum of reflection loss (RL) reached about-27.4 dB and RL was below-10 dB at the frequency range from 8.4 GHz to 18 GHz, when the thickness was 2.6 mm.
基金supported by the National Natural Science Foundation of China(No.51876080)the Strategic International Scientific and Technological Innovation Cooperation Special Funds of National Key Research and Development Program of China(No.2016YFE0204000)+3 种基金the Program for Taishan Scholars of Shandong Province Governmentthe Recruitment Program of Global Experts(Thousand Youth Talents Plan)the Natural Science Foundation of Shandong Province(ZR2017BB002)the Key Research and Development Program of Shandong Province(2018GSF116014)。
文摘The influence of barium addition to a Ni/Al2O3 catalyst on the reaction intermediates formed,the activity,resistance of the catalyst to coking,and properties of the coke formed after acetic acid steam reforming were investigated in this study.The results showed the drastic effects of barium addition on the physicochemical properties and performances of the catalyst.The solid-phase reaction between alumina and BaO formed BaAl2O4,which re-constructed the alumina structure,resulting in a decrease in the specific surface area and an increase in the resistance of metallic Ni to sintering.The addition of barium was also beneficial for enhancing the catalytic activity,resulting from the changed catalytic reaction network.The in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study of the acetic acid steam reforming indicated that barium could effectively suppress the accumulation of the reaction intermediates of carbonyl,formate,and C=C functional groups on the catalyst surface,attributed to its relatively high ability to cause the gasification of these species.In addition,coking was considerably more significant over the Ba-Ni/Al2O3 catalyst.Moreover,the Ba-Ni/Al2O3 catalyst was more stable than the Ni/Al2O3catalyst,owing to the distinct forms of coke formed (carbon nanotube form over the Ba-Ni/Al2O3 catalyst,and the amorphous form over the Ni/Al2O3 catalyst).
基金supported by the National Natural Science Foundation of China(Grants No:20590360 and 20773166)
文摘Barium modified Co/Al2O3 catalysts were prepared by incipient wetness impregnation.The catalysts were characterized by XRD,TPD and DRIFTS.The catalytic activity for Fischer-Tropsch synthesis was measured in a continuously stirred tank reactor.It was found that small amounts of BaO(≤2 wt%) improved the cobalt reducibility,which led to more cobalt active sites on the catalyst surface,and then resulted in higher CO conversion and C5+ selectivity.However,for the catalysts with high BaO loadings negative effects on the catalytic activity and selectivity for high hydrocarbons were observed because of low cobalt reducibility.
基金financially supported by the National Natural Science Foundation of China(No.51172131)
文摘Barium ferrite micro-/nanofibers with special morphology,nanowires with diameters of 100 nm,nanoribbons with diameters of 1μm,and nanotubes with outer diameter of about 300 nm while inner diameter of 100 nm were successfully prepared via electrospinning using different solvents(dimethyl formamide(DMF),solutions of deionized water and ethyl alcohol,and solutions of deionized water and acetic acid,respectively).The barium ferrite micro-/nanofibers were characterized by scanning electron microscope(SEM),X-ray diffraction analysis(XRD),and vibration sample magnetometer(VSM).The results demonstrate that the pure BaFe12O19 ferrite phase is successfully formed.And the SEM results show excellent morphologies.The magnetic hysteresis loops demonstrate that their magnetic properties are quite different with different morphologies.The specific saturation magnetization is approximately the same(46.12-49.17 A·m^2·kg^-1),but the coercivity of the BaFe12O19 increases from wires(190.08 kA·m^-1),ribbons(224.16 kA·m^-1) to tubes(258.88 kA·m^-1).
基金Item Sponsored by National Natural Science Foundation of China(50174012)Baoshan Iron and Steel Group Co
文摘The deoxidation behaviors of alloys bearing barium in pipe steel were researched with MgO crucible under argon atmosphere in MoSi2 furnace at 1 873 K.The total oxygen contents of molten steel,the distribution,size and morphology of deoxidation products in the steel were surveyed.The metamorphic mechanism for deoxidation products of alloy bearing barium was also discussed.The results show that applying alloy bearing barium to the pipe steel,very low total oxygen contents can be obtained,and deoxidation products,which easily float up from molten steel,can be changed into globular shape and uniformly distributed in steel.The equilibrium time of total oxygen is about 25 min,and the terminal total oxygen contents range from 0.002 0%to 0.002 2% after treating with SiCa wire.The best deoxidizers are SiAlBaCa and SiAlBaCaSr.
基金The Sichuan science and technology hall funds the project (04jy029-060-1)
文摘Barium carbonate particles were prepared by using homogeneous precipitation method and co-precipitation method respectively. Through adding different crystalline controlling modifiers, Barium carbonate particles in five different shapes including linear, needle-like, pillarlike, sphere-like and dumbbell-like were synthesized. These particles were characterized by SEM and XRD, and their synthetic mechanism was discussed in this paper.
基金Project supported by the National Basic Research Program of China(2012CB933100)National Natural Science Foundation of China(61001025,60721001,51132003,61171047)+2 种基金support of the Fundamental Research Funds for the Central Universities (ZYGX2011X006)the second item of strongpoint industry of Guangdong province (2012A090100001)the Opening Fund of State Key Laboratory of Electronic Thin Films and Integrated Devices (KFJJ201102)
文摘La-Co substituted M-type barium ferrites (BaM) were prepared by traditional solid state method and sintered at low tem- perature (1173 K). X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) were employed to investigate the influence of La-Co on the structure and magnetic properties of the samples. By sintering at 1173 K for 6 h in air, single phase M-type barium ferrites with chemical composition of Ba(LaCo)xFel〉z^Oj9 (x=0.0~).5) were formed. M-H curves showed that the magnetic properties of barium ferrites were obviously effected by La-Co substitution. The saturation magnetization (Ms) and coercivity (He) reached the maximum value of 65.15 AmZ/kg and 4165 Oe, respectively. This behavior was attributed to the sites of La-Co substitutions and the particles size. SEM revealed that the shape of ferrite particles was influenced by La-Co substitution.
基金supported by NNSFC(21101019)the Materials Key subject of Chizhou University(2011XK04)
文摘A new two-dimensional (2D) barium(AA) coordination polymer [Ba(3-NPA)]n (1) has been obtained by the hydro/solvothermal reaction of the corresponding metal salt with 3-nitrophthalic acid (3-NPAH2). Compound 1 was characterized by infrared spectrum, elemental analysis, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction analysis. Compound 1 crystallizes in triclinic, space group Pī with a = 4.9611(3), b = 7.2599(4), c = 12.9463(8) A, α = 89.0892(2), β = 80.546(2), γ = 73.211(2)°, V = 440.1(5) A3, Z = 2, C8H3BaNO6, Mr = 346.45, Dc = 2.614 g·cm^-3, μ = 4.526 mm^-1, S = 1.035, F(000) = 324, R = 0.0168 and wR = 0.0471 for 1712 observed reflections with I 〉 2σ(I). (Aρ)max = 0.458, (Aρ)min = -0.565 e·A-3 and (A/σ)max = 0.001. In compound 1, each 3-NPA^2- ligand links six Ba(II) ions and each Ba(II) ion attaches to six 3-NPA^2- ligands to form an inorganic layer structure in the ab-plane. The phenyl groups of 3-NPA^2- ligands are grafted on the two sides of the inorganic layer, resulting in a two-dimensional (2D) layered structure. Furthermore, the thermal stability and luminescent properties of compound 1 have also been investigated in detail.
基金Supported by Faculty of Medicine Siriraj Hospital,Mahidol University,Bangkok,Thailand
文摘AIM:To determine the pattern and distribution of colonic diverticulosis in Thai adults.METHODS:A review of the computerized radiology database for double contrast barium enema(DCBE)in Thai adults was performed at the Faculty of Medicine Siriraj Hospital,Mahidol University,Bangkok,Thailand.Incomplete studies and DCBE examinations performed in non-Thai individuals were excluded.The pattern and distribution of colonic diverticulosis detected during DCBE studies from June 2009 to October 2011 were determined.The occurrence of solitary cecal diverticulum,rectal diverticulum and giant diverticulum were reported.Factors influencing the presence of colonic diverticulosis were evaluated.RESULTS:A total of 2877 suitable DCBE examinations were retrospectively reviewed.The mean age of patients was 59.8±14.7 years.Of these patients,1778(61.8%)were female and 700(24.3%)were asymptomatic.Colonic diverticulosis was identified in 820patients(28.5%).Right-sided diverticulosis(641 cases;22.3%)was more frequently reported than left-sided diverticulosis(383 cases;13.3%).Pancolonic diverticulosis was found in 98 cases(3.4%).The occurrence of solitary cecal diverticulum,rectal diverticulum and giant diverticulum were 1.5%(42 cases),0.4%(12 cases),and 0.03%(1 case),respectively.There was no significant difference in the overall occurrence of colonic diverticulosis between male and female patients(28.3%vs 28.6%,P=0.85).DCBE examinations performed in patients with some gastrointestinal symptoms revealed the frequent occurrence of colonic diverticulosis compared with those performed in asymptomatic individuals(29.5%vs 25.3%,P=0.03).Change in bowel habit was strongly associated with the presence of diverticulosis(a relative risk of 1.39;P=0.005).The presence of diverticulosis was not correlated with age in symptomatic patients or asymptomatic individuals(P>0.05).CONCLUSION:Colonic diverticulosis was identified in28.5%of DCBE examinations in Thai adults.There was no association between the presence of diverticulosis and gender or age.