期刊文献+
共找到282篇文章
< 1 2 15 >
每页显示 20 50 100
Effect of Cr/Mn segregation on pearlite–martensite banded structure of high carbon bearing steel 被引量:11
1
作者 Yun-long Wang Yin-li Chen Wei Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第4期665-675,共11页
The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission ... The effect of Cr/Mn segregation on the abnormal banded structure of high carbon bearing steel was studied by reheating and hot rolling.With the use of an optical microscope, scanning electron microscope, transmission electron microscope, and electron probe microanalyzer, the segregation characteristics of alloying elements in cast billet and their relationship with hot-rolled plate banded structure were revealed.The formation causes of an abnormal banded structure and the elimination methods were analyzed.Results indicate the serious positive segregation of C, Cr, and Mn alloy elements in the billet.Even distribution of Cr/Mn elements could not be achieved after 10 h of heat preservation at 1200℃, and the spacing of the element aggregation area increased, but the segregation index of alloy elements decreased.Obvious alloying element segregation characteristics are present in the banded structure of the hot-rolled plate.This distinct white band is composed of martensitic phases.The formation of this abnormal pearlite–martensite banded structure is due to the interaction between the undercooled austenite transformation behavior of hot-rolled metal and the segregation of its alloying elements.Under the air cooling after rolling, controlling the segregation index of alloy elements can reduce or eliminate the abnormal banded structure. 展开更多
关键词 high carbon bearing steel elements segregation HOMOGENIZATION banded structure
在线阅读 下载PDF
Intermetallic Compounds in the Banded Structure and Their Effect on Mechanical Properties of Al/Mg Dissimilar Friction Stir Welding Joints 被引量:11
2
作者 Hui Shi Ke Chen +5 位作者 Zhiyuan Liang Fengbo Dong Taiwu Yu Xianping Dong Lanting Zhang Aidang Shan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第4期359-366,共8页
Dissimilar friction stir welding(FSW) between aluminum and magnesium alloy was performed, using various tool rotational speed(TRS) at a ?xed travel speed, with tool offset to aluminum to investigate the formation... Dissimilar friction stir welding(FSW) between aluminum and magnesium alloy was performed, using various tool rotational speed(TRS) at a ?xed travel speed, with tool offset to aluminum to investigate the formation of intermetallic compounds(IMCs) in the banded structure(BS) zone and their effect on mechanical properties. Large quantities of IMCs, in the form of alternating bands of particles or lamellae, were found in the BS zone, where drastic material intermixing occurred during FSW. The BS microstructural characters in terms of the morphology of the bands and the quantity and distribution of IMC particles varied with TRS. All welds exhibited brittle fracture mode with their fracture paths propagating mainly in/along the IMCs in the BS. It is shown that these BS microstructural characters have significant effect on the mechanical properties of the joints. Suggestions on tailoring the BS microstructure were proposed for improving the strength of the BS zone and the final mechanical properties of the Al/Mg FSW joints. 展开更多
关键词 banded structure Intermetallic compounds Dissimilar friction stir welding Mechanical properties
原文传递
Banded structure control of low carbon microalloyed steel based on oxide metallurgy
3
作者 Yong-kun Yang Jia-yu Zhu +2 位作者 Xiao-ming Li Yang Wang Dong-ping Zhan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第11期2242-2253,共12页
Banded structure is a common harmful microstructure for low carbon microalloyed steel,which seriously shortens the service life of processed parts.In order to study the effect of oxide metallurgy on improving banded s... Banded structure is a common harmful microstructure for low carbon microalloyed steel,which seriously shortens the service life of processed parts.In order to study the effect of oxide metallurgy on improving banded structure,the Ti-Zr deoxidized low carbon microalloyed steel that can play the oxide metallurgical role of inclusion was chosen as the research object,and the inclusion characteristics,microstructure and transverse and longitudinal mechanical properties after hot rolling were analyzed.The results showed the inclusion number density increased in all experimental steels after hot rolling,and a large number of long strip inclusions with aspect ratio greater than 3 appeared along the rolling direction.In addition,after hot rolling,there were element segregation bands in the experimental steels,and granular bainite bands were formed in the element enrichment zone.However,the intragranular ferrite generated in the cooling process destroyed the continuity of granular bainite bands,so that the microstructure anisotropy indexes of experimental steels were small.The mechanical properties analysis showed that the anisotropy of performance was mainly reflected in plasticity and toughness in the experimental steels.Among them,the difference ratio of elongation,section shrinkage and impact energy of No.2 steel was 1.69%,3.87% and 1.69%,respectively,which were less than those of No.1 steel and No.3 steel.The anisotropy of microstructure and mechanical properties of No.2 steel that full played the role of oxide metallurgy were improved,and the banded structure control of low carbon microalloyed steel can be realized by oxide metallurgy technology. 展开更多
关键词 Low carbon microalloyed steel Hot rolling banded structure Oxide metallurgy Intragranular ferrite
原文传递
The mechanism of the banded structure of drifting macroalgae in the Yellow Sea
4
作者 Yan Li Fangli Qiao +3 位作者 Hongyu Ma Qiuli Shao Zhixin Zhang Guansuo Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第7期31-41,共11页
At the end of May 2008,a massive bloom of macroalgae occurred in the western Yellow Sea off China and lasted for nearly two months,and annual blooms have occurred since then on. During bloom period,the surface-driftin... At the end of May 2008,a massive bloom of macroalgae occurred in the western Yellow Sea off China and lasted for nearly two months,and annual blooms have occurred since then on. During bloom period,the surface-drifting macroalgae have showed an interesting pattern dominated by a banded structure,and the distance between neighboring bands ranged from hundreds of meters to about 6 km with a peak at 1–1.5 km,which is an order of higher than the scale of Langmuir circulation of 50–100 m. In order to explain this new phenomenon,ocean current data obtained from a Doppler current profiler off Qingdao was used to implement stability analysis. By numerically solving the resulting differential Orr-Sommerfeld equation,the secondary circulation induced from the instability of the Emkan current was found to fit well with the observed spatial scale of the surface-drifting macroalgae’s banded structure. As the wind driven Emkan current exist universally in the global ocean,it is reasonable to conclude that the banded structure with kilometers distance between adjoining bands is ubiquitous. We found a new circulation in the upper ocean which is important for exchange of energy,materials and gas between the upper ocean and subsurface layer. 展开更多
关键词 banded structure stability analysis secondary circulation
在线阅读 下载PDF
Limited Memory BFGS Method for Least Squares Semidefinite Programming with Banded Structure
5
作者 XUE Wenjuan SHEN Chungen YU Zhensheng 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第4期1500-1519,共20页
This work is intended to solve the least squares semidefinite program with a banded structure. A limited memory BFGS method is presented to solve this structured program of high dimension.In the algorithm, the inverse... This work is intended to solve the least squares semidefinite program with a banded structure. A limited memory BFGS method is presented to solve this structured program of high dimension.In the algorithm, the inverse power iteration and orthogonal iteration are employed to calculate partial eigenvectors instead of full decomposition of n × n matrices. One key feature of the algorithm is that it is proved to be globally convergent under inexact gradient information. Preliminary numerical results indicate that the proposed algorithm is comparable with the inexact smoothing Newton method on some large instances of the structured problem. 展开更多
关键词 banded structure inexact gradient least squares semidefinite program limited memory BFGS orthogonal iteration
原文传递
Bandstructure Engineering by Surface Water Dosing on SrFe_(2)As_(2)
6
作者 Y.M.Zhang F.Wu +12 位作者 W.J.Shi Z.A.Xu S.C.Shi G.Y.He C.Chen H.F.Yang L.X.Yang Z.Liu W.Lu Y.Zhang Y.F.Guo Y.L.Chen Z.K.Liu 《Chinese Physics Letters》 2025年第10期238-262,共25页
Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among th... Fe-based superconductors represent a fascinating class of materials,extensively studied for their complex interplay of superconductivity,magnetism,spin density waves,and nematicity,along with the interactions among these orders.An intriguing yet unexplained phenomenon observed in Fe-based superconductors is the emergence of superconductivity below 25K in the non-superconducting parent compound SrFe_(2)As_(2)following exposure to water at its surface.In this study,we employed in situ angle-resolved photoemission spectroscopy and low-energy electron diffraction to meticulously examine the electronic structure evolution of SrFe_(2)As_(2)upon in situ water dosing.Our findings indicate that water dosing markedly attenuates the spin density wave phase and surface Sr reconstruction while preserving the nematic order in SrFe_(2)As_(2).Furthermore,we detected an enhancement in the spectral weight of bands near the Fermi level.Our observations highlight the critical role of the intricate interplay among various orders induced by water dosing,which effectively modifies the band structure and favors the emergence of superconductivity in SrFe_(2)As_(2). 展开更多
关键词 nematic order emergence superconductivity spin density wave band structure surface water dosing SrFe electronic structure evolution SUPERCONDUCTIVITY
原文传递
Driving selective photoelectrocatalytic oxidation of seawater to oxygen via regulating interfacial water structures on titanium oxides
7
作者 Qisen Jia Yanan Wang +7 位作者 Yan Zhao Zhenming Tian Luyao Ren Xuejing Cui Guangbo Liu Xin Chen Wenzhen Li Luhua Jiang 《Chinese Journal of Catalysis》 2025年第5期154-163,共10页
Photoelectrocatalytic(PEC)seawater splitting as a green and sustainable route to harvest hydrogen is attractive yet hampered by low activity of photoanodes and unexpected high selectivity to the corrosive and toxic ch... Photoelectrocatalytic(PEC)seawater splitting as a green and sustainable route to harvest hydrogen is attractive yet hampered by low activity of photoanodes and unexpected high selectivity to the corrosive and toxic chlorine.Especially,it is full of challenges to unveil the key factors influencing the selectivity of such complex PEC processes.Herein,by regulating the energy band and surface structure of the anatase TiO_(2) nanotube array photoanode via nitrogen-doping,the seawater PEC oxidation shifts from Cl^(-)oxidation reaction(ClOR)dominant on the TiO_(2) photoanode(61.6%)to oxygen evolution reaction(OER)dominant on the N-TiO_(2) photoanode(62.9%).Comprehensive investigations including operando photoelectrochemical FTIR and DFT calculations unveil that the asymmetric hydrogen-bonding water at the N-TiO_(2) electrode/electrolyte interface enriches under illumination,facilitating proton transfer and moderate adsorption strength of oxygen-intermediates,which lowers the energy barrier for the OER yet elevates the energy barrier for the ClOR,resulting to a promoted selectivity towards the OER.The work sheds light on the underlying mechanism of the PEC water oxidation processes,and highlights the crucial role of interfacial water on the PEC selectivity,which could be regulated by controlling the energy band and the surface structure of semiconductors. 展开更多
关键词 PHOTOELECTROCATALYSIS Seawater splitting SELECTIVITY Interfacial water structure Energy band structure
在线阅读 下载PDF
Electronic structure,elasticity,magnetism of Mn_(2)XIn(X=Fe,Co)full Heusler compounds under biaxial strain:First-principles calculations
8
作者 Shiran Gao Chengyang Zhao +4 位作者 Xinzhuo Zhang Wen Qiao Shiming Yan Ru Bai Tiejun Zhou 《Chinese Physics B》 2025年第1期438-449,共12页
The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate ... The electronic structure,elasticity,and magnetic properties of the Mn_(2)XIn(X=Fe,Co)full-Heusler compounds are comprehensively investigated via first-principles calculations.The calculated elastic constants indicate that both Mn_(2)FeIn and Mn_(2)Co In possess ductility.At the optimal lattice constants,the magnetic moments are found to be 1.40μB/f.u.for Mn_(2)FeIn and 1.69μB/f.u.for Mn_(2)CoIn.Under the biaxial strain ranging from-2%to 5%,Mn_(2)FeIn demonstrates a remarkable variation in the spin polarization,spanning from-2%to 74%,positioning it as a promising candidate for applications in spintronic devices.Analysis of the electronic structure reveals that the change in spin polarization under strain is due to the shift of the spin-down states at the Fermi surface.Additionally,under biaxial strain,the magnetic anisotropy of Mn_(2)FeIn undergoes a transition of easy-axis direction.Utilizing second-order perturbation theory and electronic structure analysis,the variation in magnetic anisotropy with strain can be attributed to changes of d-orbital states near the Fermi surface. 展开更多
关键词 magnetic anisotropy biaxial strain electronic band structure mechanical properties
原文传递
Driving photoelectrochemical water oxidation towards H_(2)O_(2)via regulation of energy band structure of BiVO_(4)
9
作者 Yan Zhao Qisen Jia +8 位作者 Zhenming Tian Yanan Wang Jiashu Li Shixu Song Teng Fu Xuejing Cui Guangbo Liu Xin Zhou Luhua Jiang 《Journal of Energy Chemistry》 2025年第4期877-887,共11页
Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more ... Photoelectrochemical water oxidation(PEC-WO)as a green and sustainable route to produce H_(2)O_(2)has attracted extensive attentions.However,water oxidation to H_(2)O_(2)via a 2e^(-) pathway is thermodynamically more difficult than to O_(2)via a 4e^(-)pathway.Herein,with a series of BiVO_(4)-based photoanodes,the decisive factors determining the PEC activity and selectivity are elucidated,combining a comprehensive experimental and theoretical investigations.It is discovered that the ZnO/BiVO_(4)photoanode(ZnO/BVO)forms a Type-Ⅱheterojunction in energy level alignment.The accelerated photogenerated charge separation/transfer dynamics generates denser surface holes and higher surface photovoltage.Therefore,the activity of water oxidation reaction is promoted.The selectivity of PEC-WO to H_(2)O_(2)is found to be potential-dependent,i.e.,at the lower potentials(PEC-dominated),surface hole density determines the selectivity;and at the higher potentials(electrochemical-dominated),surface reaction barriers govern the selectivity.For the ZnO/BVO heterojunction photoanode,the higher surface hole density facilitates the generation of OH·and the subsequent OH·/OH·coupling to form H_(2)O_(2),thus rising up with potentials;at the higher potentials,the 2-electron pathway barrier over ZnO/BVO surface is lower than over BVO surface,which benefits from the electronic structure regulation by the underlying ZnO alleviating the over-strong adsorption of^(*)OH on BVO,thus,the two-electron pathway to produce H_(2)O_(2)is more favored than on BVO surface.This work highlights the crucial role of band energy structure of semiconductors on both PEC reaction activity and selectivity,and the knowledge gained is expected to be extended to other photoeletrochemical reactions. 展开更多
关键词 Photoelectrochemical water oxidation Reaction selectivity BiVO_(4)photoanode Production of H_(2)O_(2) Energy band structure
在线阅读 下载PDF
Banding structure formation during directional solidification of Pb-Bi peritectic alloys 被引量:1
10
作者 胡小武 李双明 +1 位作者 艾凡荣 闫洪 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2131-2138,共8页
Directional solidification experiments on Pb-Bi peritectic alloys were carried out at very low growth rate (v=0.5 μm/s) and high temperature gradient (G=35 K/mm) in an improved Bridgman furnace. The banding struc... Directional solidification experiments on Pb-Bi peritectic alloys were carried out at very low growth rate (v=0.5 μm/s) and high temperature gradient (G=35 K/mm) in an improved Bridgman furnace. The banding structures were observed in both hypoperitectic and hyperperitectic compositions (Pb-xBi, x=26%, 28%, 30% and 34%). Tree-like primary α phase in the center of the sample surrounded by the peritectic β phase matrix was also observed, resulting from the melt convection. The banding microstructure, however, is found to be transient after the tree-like structure and only the peritectic phase forms after a few bands. Composition variations in the banding structure are measured to determine the nucleation undercooling for both α and β phases. In a finite length sample, convection is shown to lead only to the transient formation of bands. In this transient banding regime, only a few bands with a variable width are formed, and this transient banding process can occur over a wide range of compositions inside the two-phase peritectic region. 展开更多
关键词 directional solidification SEGREGATION Bridgman technique Pb-Bi alloys banding structure
在线阅读 下载PDF
MORPHOLOGY EVOLUTION IN PTFE AS A FUNCTION OF MELT TIME AND TEMPERATURE——Ⅱ.LOW MOLECULAR WEIGHT FOLDED CHAIN SINGLE CRYSTALS AND BAND STRUCTURES
11
作者 J.YangandP.H.Geil T.C.LongandP.Xu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第2期137-145,共9页
The effect of sintering dispersed and bulk,low molecular weight(M_n=50,000 Da),nano-emulsionpolytetrafluoroethylene(PTFE)particles near their melting point is described.With the nascent particles consisting of ca.75 n... The effect of sintering dispersed and bulk,low molecular weight(M_n=50,000 Da),nano-emulsionpolytetrafluoroethylene(PTFE)particles near their melting point is described.With the nascent particles consisting of ca.75 nm diameter,hexagonal,single crystals,sintering at,e.g.,350℃,results,initially,in merger of neighboring particles,followed by individual molecular motion on the substrate and the formation of folded chain,lamellar single crystals andspherulites,and on-edge ribbons.It is suggested these structures develop,with time,in the mesomorphic“melt”.Sintering ofthe bulk resin yields extended chain,band structures,as well as folded chain lamellae;end-surface to end-surface merger,possibly by end-to-end polymerization,occurs with increasing time. 展开更多
关键词 Polytetrafluoroethylene NANO-EMULSION Single crystals SPHERULITES banded structures Extended chain crystals Sintering.
在线阅读 下载PDF
Floquet Weyl Semimetals with Linked Fermi Arcs
12
作者 Dongling Liu Zheng-Yang Zhuang Zhongbo Yan 《Chinese Physics Letters》 2026年第1期218-224,共7页
Floquet engineering provides a powerful and flexible method for modifying the band structures of quantum materials.While circularly polarized light has been shown to convert curved nodal lines in three-dimensional sem... Floquet engineering provides a powerful and flexible method for modifying the band structures of quantum materials.While circularly polarized light has been shown to convert curved nodal lines in three-dimensional semimetals into Weyl points,such a transformation is forbidden for an isolated straight nodal line.In this work,we uncover a dramatic shift in this paradigm when multiple straight nodal lines intersect.We observe that circularly polarized light not only gaps them into Weyl points but also induces unprecedented surface-state Fermi arcs that extend across the entire surface Brillouin zone and form a linked topological structure.These findings advance our fundamental understanding of light-driven transitions in topological semimetals and unveil a unique Weyl semimetal phase defined by linked Fermi arcs.We discuss potential exotic phenomena arising from this phase,applications of our predictions to spin-split antiferromagnets,and the extension of this Weyl semimetal phase to classical systems. 展开更多
关键词 curved nodal lines weyl points weyl pointssuch floquet engineering quantum materialswhile modifying band structures circularly polarized light Floquet Weyl Semimetals
原文传递
Impact of Oxygen Vacancy on Band Structure Engineering of n-p Codoped Anatase TiO2
13
作者 孟强强 王加军 +1 位作者 黄静 李群祥 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第2期155-160,I0001,共7页
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i... Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance. 展开更多
关键词 Oxygen vacancy Band structure engineering n-p codoped Anatase TiO2
在线阅读 下载PDF
Band structures of TiO_2 doped with N, C and B 被引量:6
14
作者 XU Tian-hua SONG Chen-lu LIU Yong HAN Gao-rong 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第4期299-303,共5页
This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that th... This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of im-purity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of im-purity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing. 展开更多
关键词 CASTEP code Titanium dioxide Band structure Charge density
在线阅读 下载PDF
Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting 被引量:7
15
作者 Juncheng Wu Zhe‐Fan Wang +7 位作者 Taotao Guan Guoli Zhang Juan Zhang Jie Han Shengqin Guan Ning Wang Jianlong Wang Kaixi Li 《Carbon Energy》 SCIE CSCD 2023年第3期112-125,共14页
Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of... Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting. 展开更多
关键词 band structure bifunctional electrocatalysts CoP nanoparticles overall water splitting rich‐defect carbon
在线阅读 下载PDF
Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications 被引量:6
16
作者 Qingdong Ou Xiaozhi Bao +5 位作者 Yinan Zhang Huaiyu Shao Guichuan Xing Xiangping Li Liyang Shao Qiaoliang Bao 《Nano Materials Science》 CAS 2019年第4期268-287,共20页
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe... Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies. 展开更多
关键词 Band structure engineering Perovskite nanostructures Optoelectronic applications Doping Heterostructures
在线阅读 下载PDF
Band structure calculation of scalar waves in two-dimensional phononic crystals based on generalized multipole technique 被引量:4
17
作者 史志杰 汪越胜 张传增 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第9期1123-1144,共22页
A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed o... A multiple monopole (or multipole) method based on the generalized mul- tipole technique (GMT) is proposed to calculate the band structures of scalar waves in two-dimensional phononic crystals which are composed of arbitrarily shaped cylinders embedded in a host medium. In order to find the eigenvalues of the problem, besides the sources used to expand the wave field, an extra monopole source is introduced which acts as the external excitation. By varying the frequency of the excitation, the eigenvalues can be localized as the extreme points of an appropriately chosen function. By sweeping the frequency range of interest and sweeping the boundary of the irreducible first Brillouin zone, the band structure is obtained. Some numerical examples are presented to validate the proposed method. 展开更多
关键词 phononic crystal generalized multipole technique multiple multipolemethod multiple monopole method band structure eigenvalue problem
在线阅读 下载PDF
Synthesis,Crystal Structure and Band Structure of Sm_3In_5 被引量:5
18
作者 岳呈阳 雷晓武 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第3期384-389,共6页
A new intermetallic compound, Sm3In5, has been synthesized by solid-state reaction of the corresponding pure elements in a welded niobium tube at high temperature. Its crystal structure was established by single-cryst... A new intermetallic compound, Sm3In5, has been synthesized by solid-state reaction of the corresponding pure elements in a welded niobium tube at high temperature. Its crystal structure was established by single-crystal X-ray diffraction. Sm3In5 crystallizes in orthorhombic, space group Cmcm with a = 10.0137(8), b = 8.1211(7), c = 10.3858(8) A, V = 844.60(1) A^3, Z = 4, Mr = 1025.15, Dc = 8.062 g/cm^3, μ = 33.791 mm^-1, F(000) = 1724, the final R = 0.0346 and wR = 0.0775 for 533 observed reflections with I 〉 2σ(I). The structure of Sm3In5 belongs to the modified Pu3Pd5 type. It is isostructural with La3In5 and β-Y3In5, containing one-dimensional (1D) [In5] cluster chains along the c-axis, which are weakly interconnected via In-In bonds (3.345A) to form a three-dimensional (3D) structure. The samarium cations are located at the voids between the 1D [In5] cluster chains. Band structure calculations based on Density Function Theory (DFT) method indicate that Sm3In5 is metallic. 展开更多
关键词 INTERMETALLIC INDIDES crystal structure band structure calculation
在线阅读 下载PDF
Synthesis, Crystal Structure and Band Structure of Eu_3Sn_5 with Arachno-type Zintl Anions 被引量:4
19
作者 雷晓武 毛江高 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第12期1403-1408,共6页
A new polar intermetallic compound, Eu3Sn5, has been synthesized by solid-state reaction of the corresponding pure elements in a stoicbiometric ratio in a welded tantalum tube at high temperature. Its crystal structur... A new polar intermetallic compound, Eu3Sn5, has been synthesized by solid-state reaction of the corresponding pure elements in a stoicbiometric ratio in a welded tantalum tube at high temperature. Its crystal structure was established by single-crystal X-ray diffraction. EuaSn5 crystallizes in orthorhombic, space group Cmcm with a = 10.466(11), b = 8,445(8), c = 10.662(12)/k, V = 942.4(17)A^3, Z = 4, Mr = 1049.33, De= 7.396 g/cm^3, ,μ = 32.578 mm^-1, F(000) = 1756, the final R = 0.0236 and wR = 0.0472 for 535 observed reflections with I 〉 2σ(I). Its structure belongs to the modified Pu3Pd5 type. It is isostructural with SraSn5 and Ba3Sn5, featuring [Sn5] square pyramidal clusters described as “arachno” according to the Wade-Mingos electron counting rules. The europium cations are located at the voids between the square pyramidal clusters. Results of the extended Htickel band structure calculations indicate that Eu3Sn5 is metallic. 展开更多
关键词 INTERMETALLIC STANNIDE crystal structure band structure
在线阅读 下载PDF
Electronic structure calculations of rare-earth intermetallic compound YAg using ab initio methods 被引量:2
20
作者 S.Ugur G.Ugur +1 位作者 F.Soyalp R.Ellialt1oglu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第4期664-666,共3页
The structural, elastic and electronic properties of YAg-B2(CsCl) were investigated using the first-principles calculations. The energy band structure and the density of states were studied in detail, including part... The structural, elastic and electronic properties of YAg-B2(CsCl) were investigated using the first-principles calculations. The energy band structure and the density of states were studied in detail, including partial density of states (PDOS), in order to identify the character of each band. The structural parameters (lattice constant, bulk modulus, pressure derivative of bulk modulus) and elastic constants were also obtained. The results were consistent with the experimental data available in the literature, as well as other theoretical results. 展开更多
关键词 YAG electronic band structure density of states elastic constants ab initio rare earths
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部