Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach mod...Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach modules over a unital Banach algebra.展开更多
In this paper,we prove the generalized Hyers-Ulam-Rassias stability of universal Jensen's equations in Banach modules over a unital C~*-algebra.It is applied to show the stability of universal Jensen's equatio...In this paper,we prove the generalized Hyers-Ulam-Rassias stability of universal Jensen's equations in Banach modules over a unital C~*-algebra.It is applied to show the stability of universal Jensen's equations in a Hilbert module over a unital C~*-algebra.Moreover,we prove the stability of linear operators in a Hilbert module over a unitat C~*-algebra.展开更多
The authors prove the Hyers-Ulam-Rassias stability of the quadratic mapping in Banachmodules over a unital C*-algebra, and prove the Hyers-Ulam-Rassias stability of the quadraticmapping in Banach modules over a unital...The authors prove the Hyers-Ulam-Rassias stability of the quadratic mapping in Banachmodules over a unital C*-algebra, and prove the Hyers-Ulam-Rassias stability of the quadraticmapping in Banach modules over a unital Banach algebra.展开更多
Let X and Y be vector spaces. The authors show that a mapping f : X →Y satisfies the functional equation 2d f(∑^2d j=1(-1)^j+1xj/2d)=∑^2dj=1(-1)^j+1f(xj) with f(0) = 0 if and only if the mapping f : X...Let X and Y be vector spaces. The authors show that a mapping f : X →Y satisfies the functional equation 2d f(∑^2d j=1(-1)^j+1xj/2d)=∑^2dj=1(-1)^j+1f(xj) with f(0) = 0 if and only if the mapping f : X→ Y is Cauchy additive, and prove the stability of the functional equation (≠) in Banach modules over a unital C^*-algebra, and in Poisson Banach modules over a unital Poisson C*-algebra. Let A and B be unital C^*-algebras, Poisson C^*-algebras or Poisson JC^*- algebras. As an application, the authors show that every almost homomorphism h : A →B of A into is a homomorphism when h((2d-1)^nuy) =- h((2d-1)^nu)h(y) or h((2d-1)^nuoy) = h((2d-1)^nu)oh(y) for all unitaries u ∈A, all y ∈ A, n = 0, 1, 2,.... Moreover, the authors prove the stability of homomorphisms in C^*-algebras, Poisson C^*-algebras or Poisson JC^*-algebras.展开更多
Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A o...Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A of the weighted Lorentz space, and showed that the space of the multipliers from L_w~1,(G) to A is algebrically isomorphic and homeomorphic to A.展开更多
Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a t...Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a translation invariant Banach space. Fur- thermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then Aωp,q (G) admits an approximate identity bounded in Lω1 (G). It is also proved that the space Lωp (G) Lω1 Lωq (G) is isometrically isomorphic to the space Aωp,q (G) and the space of multipliers from Lωp (G) to Lq-1, (G) is isometrically isomorphic to the dual of the space Aωp,q (G) iff G satisfies a property Ppq. At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from Lω1 (G) to Aωp,q (G) is the space Aωp,q (G).展开更多
Let G be a locally compact abelian group. The main purpose of this article is to find the space of multipliers from the Lorentz space. L(p1, q1)(G) to L(p'2, q'2)(G). For this reason, the authors define the ...Let G be a locally compact abelian group. The main purpose of this article is to find the space of multipliers from the Lorentz space. L(p1, q1)(G) to L(p'2, q'2)(G). For this reason, the authors define the space A p1,q1^ p2,p2(G), discuss its properties and prove that the space of multipliers from L(p1, q1)(G) to L(p'2, q'2)(G) is isometrically isomorphic to the dual of A p1,q1^p2,q2 (G).展开更多
We prove the Hyers-Ulam stability of linear N-isometries in linear N-normed Banach mod- ules over a unital C^*-algebra. The main purpose of this paper is to investigate N-isometric C^*-algebra isomorphisms between l...We prove the Hyers-Ulam stability of linear N-isometries in linear N-normed Banach mod- ules over a unital C^*-algebra. The main purpose of this paper is to investigate N-isometric C^*-algebra isomorphisms between linear N-normed C^*-algebras, N-isometric Poisson C^*-algebra isomorphisms between linear N-normed Poisson C^*-algebras, N-isometric Lie C^*-algebra isomorphisms between linear N-normed Lie C^*-algebras, N-isometric Poisson JC^*-algebra isomorphisms between linear N-normed Poisson JC^*-algebras, and N-isometric Lie JC^*-algebra isomorphisms between linear N-normed Lie JC^*-algebras. Moreover, we prove the Hyers- Ulam stability of t:heir N-isometric homomorphisms.展开更多
基金supported by the National Natural Science Foundation of China (10671013,60972089,11171022)
文摘Using a fixed-point method, we establish the generalized Hyers-Ulam stability of a general mixed additive-cubic equation: f(kx + y) + f(kx - y) = kf(x + y) + kf(x - y) + 2f(kx) - 2kf(x) in Banach modules over a unital Banach algebra.
基金supported by Korea Research Foundation Grant KRF-2002-041-C00014
文摘In this paper,we prove the generalized Hyers-Ulam-Rassias stability of universal Jensen's equations in Banach modules over a unital C~*-algebra.It is applied to show the stability of universal Jensen's equations in a Hilbert module over a unital C~*-algebra.Moreover,we prove the stability of linear operators in a Hilbert module over a unitat C~*-algebra.
基金Project supported by grant No.KRF-2000-015-DP0038.
文摘The authors prove the Hyers-Ulam-Rassias stability of the quadratic mapping in Banachmodules over a unital C*-algebra, and prove the Hyers-Ulam-Rassias stability of the quadraticmapping in Banach modules over a unital Banach algebra.
基金Grant No. F01-2006-000-10111-0 from the Korea Science & Engineering FoundationThe second author is supported by National Natural Science Foundation of China (No.10501029)+1 种基金Tsinghua Basic Research Foundation (JCpy2005056)the Specialized Research Fund for Doctoral Program of Higher Education
文摘Let X and Y be vector spaces. The authors show that a mapping f : X →Y satisfies the functional equation 2d f(∑^2d j=1(-1)^j+1xj/2d)=∑^2dj=1(-1)^j+1f(xj) with f(0) = 0 if and only if the mapping f : X→ Y is Cauchy additive, and prove the stability of the functional equation (≠) in Banach modules over a unital C^*-algebra, and in Poisson Banach modules over a unital Poisson C*-algebra. Let A and B be unital C^*-algebras, Poisson C^*-algebras or Poisson JC^*- algebras. As an application, the authors show that every almost homomorphism h : A →B of A into is a homomorphism when h((2d-1)^nuy) =- h((2d-1)^nu)h(y) or h((2d-1)^nuoy) = h((2d-1)^nu)oh(y) for all unitaries u ∈A, all y ∈ A, n = 0, 1, 2,.... Moreover, the authors prove the stability of homomorphisms in C^*-algebras, Poisson C^*-algebras or Poisson JC^*-algebras.
文摘Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A of the weighted Lorentz space, and showed that the space of the multipliers from L_w~1,(G) to A is algebrically isomorphic and homeomorphic to A.
文摘Let G be a locally compact unimodular group with Haar measure rmdx and ω be the Beurling's weight function on G (Reiter, [10]). In this paper the authors define a space Aωp,q (G) and prove that Aωp,q (G) is a translation invariant Banach space. Fur- thermore the authors discuss inclusion properties and show that if G is a locally compact abelian group then Aωp,q (G) admits an approximate identity bounded in Lω1 (G). It is also proved that the space Lωp (G) Lω1 Lωq (G) is isometrically isomorphic to the space Aωp,q (G) and the space of multipliers from Lωp (G) to Lq-1, (G) is isometrically isomorphic to the dual of the space Aωp,q (G) iff G satisfies a property Ppq. At the end of this work it is showed that if G is a locally compact abelian group then the space of all multipliers from Lω1 (G) to Aωp,q (G) is the space Aωp,q (G).
文摘Let G be a locally compact abelian group. The main purpose of this article is to find the space of multipliers from the Lorentz space. L(p1, q1)(G) to L(p'2, q'2)(G). For this reason, the authors define the space A p1,q1^ p2,p2(G), discuss its properties and prove that the space of multipliers from L(p1, q1)(G) to L(p'2, q'2)(G) is isometrically isomorphic to the dual of A p1,q1^p2,q2 (G).
基金The first author is supported by Korea Research Foundation Grant KRF-2005-041-C00027
文摘We prove the Hyers-Ulam stability of linear N-isometries in linear N-normed Banach mod- ules over a unital C^*-algebra. The main purpose of this paper is to investigate N-isometric C^*-algebra isomorphisms between linear N-normed C^*-algebras, N-isometric Poisson C^*-algebra isomorphisms between linear N-normed Poisson C^*-algebras, N-isometric Lie C^*-algebra isomorphisms between linear N-normed Lie C^*-algebras, N-isometric Poisson JC^*-algebra isomorphisms between linear N-normed Poisson JC^*-algebras, and N-isometric Lie JC^*-algebra isomorphisms between linear N-normed Lie JC^*-algebras. Moreover, we prove the Hyers- Ulam stability of t:heir N-isometric homomorphisms.