The integration of boronizing and austempering termed boro-austempering treatment is a new processing route for preparing high strength bainitic steel with high surface hardness and high corrosion resistance.The micro...The integration of boronizing and austempering termed boro-austempering treatment is a new processing route for preparing high strength bainitic steel with high surface hardness and high corrosion resistance.The microstructure and properties of a medium-carbon bainitic steel prepared by boro-austempering treatment were characterized and analyzed.The results show that a single Fe_(2)B layer on bainite substrate was obtained with surface hardness of~1400 HV,and the critical load for adhesive failure of borided layer reached 73.6 N.The silicon-rich α-Fe phase in transition zone was clarified as ferrite,which was formed at the beginning stage of cooling process from boronizing to low-temperature bainite transformation.Moreover,the relative potential differences between Fe_(2)B and bainite matrix,and ferrite and bainite matrix were 75 and 92 mV,respectively,with bainite matrix acting as active anode,indicating that the corrosion resistances of Fe2B and ferrite were better than that of bainite.展开更多
a-N curves of fatigue crack growth of U20Mn bainite rail after different heat treatment process were studied(The temperature is cooled from 900 to 20℃,the cooling rate was 0.5℃/s,1℃/s and salt bath isothermal respe...a-N curves of fatigue crack growth of U20Mn bainite rail after different heat treatment process were studied(The temperature is cooled from 900 to 20℃,the cooling rate was 0.5℃/s,1℃/s and salt bath isothermal respectively),the Paris formula of fatigue crack growth was fitted linearly,and the material parameters C and n were measured.The results show that the sample with cooling rate of 0.5℃/s has the fastest crack growth rate,and the sample with salt bath isothermal has the slowest crack growth rate.The coarse M/A islands with irregular shape in bainite structure with cooling rate of 0.5℃/s has poor resistance to fatigue crack propagation,which is not conducive to improving the fatigue performance.However,the sample with salt bath isothermal has longer fatigue life.Due to the combination of bainitie lamellar and retained austenite distributed between them,the salt bath isothermal sample can effectively improve the strength and toughness of bainite steel.The sample with cooling rate of 0.5℃/s is mainly composed of granular bainitie structure,and the fatigue crack growth trajectory is generally gentle without large angle deflection,the sample with salt bath isothermal is mainly composed of bainite lamellar structure,and the fatigue crack growth trajectory is not straight,with a large number of Z-shaped deflection.The fatigue cracks are prone to produce branch cracks at the stress concentration of propagation deflection,and the branch crack consumes the energy of the main fatigue cracks,thus reducing the fatigue crack growth rate and improving fatigue life.展开更多
The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume ele...The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume element simulations.The results reveal that as the austempering temperature increases from low to intermediate,the optimal balance of properties shifts from strength-toughness to plasticity-toughness.The formation of fine bainitic ferrite plates and bainite sheaves under low austempering temperature(270℃)enhances both strength and toughness.Conversely,the wide size and shape distribution of the retained austenite(RA)obtained through austempering at intermediate temperature(350℃)contribute to increased work-hardening capacity,resulting in enhanced plasticity.The volume fraction of the ductile film-like RA plays a crucial role in enhancing impact toughness under relatively higher austempering temperatures.In the simulations of tensile deformation,the concentration of equivalent plastic strain predominantly manifests in the bainitic ferrite neighboring the martensite,whereas the equivalent plastic strain evenly spreads between the thin film-like retained austenite and bainitic ferrite.It is predicted that the cracks will occur at the interface between martensite and bainitic ferrite where the strain is concentrated,and eventually propagate along the strain failure zone.展开更多
The microstructure evolution and bainitic transformation of an Fe-0.19C-4.03Mn-1.48Si steel subjected to near-M_(s)austempering treatment were systematically investigated by combining dilatometer,X-ray diffraction,and...The microstructure evolution and bainitic transformation of an Fe-0.19C-4.03Mn-1.48Si steel subjected to near-M_(s)austempering treatment were systematically investigated by combining dilatometer,X-ray diffraction,and electron microscopy.Three additional austempering treatments with isothermal temperatures above M_(s)were used as benchmarks.Results show that the incubation period for the bainitic transformation occurs when the medium Mn steel is treated with the austempering temperature above M_(s).However,when subjected to near-M_(s)isothermal treatment,the medium Mn steel does not show an incubation period and has the fastest bainitic transformation rate.Moreover,the largest volume fraction of bainite with a value of 74.7%is obtained on the condition of near-M_(s)austempering treatment after cooling to room temperature.Dilatometer and microstructure evolution analysis indicates that the elimination of the incubation period and the fastest rate of bainitic transformation are related to the preformed martensite.The advent of preformed martensite allows the specimen to generate more bainite in a limited time.Considering bainitic ferrite nucleation at austenite grain boundaries and through autocatalysis at ferrite/austenite interfaces,a model is established to understand the kinetics of bainite formation and it can describe the nucleation rate of bainitic transformation well when compared to the experimental results.展开更多
The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel.The different bainite contents(18–53 vol.%)in polygonal ferrite and bainite(PF+B)dual phase steel were o...The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel.The different bainite contents(18–53 vol.%)in polygonal ferrite and bainite(PF+B)dual phase steel were obtained by controlling the relaxation finish temperature during the rolling process.The effect of bainite volume fraction on the tensile deformability was systematically investigated via experiments and crystal plasticity finite element model(CPFEM)simulation.The experimental results showed that the steel showed optimal strain hardenability and strength–plasticity matching when the bainite reached 35%.The 3D-CPFEM models with the same grain size and texture characters were established to clarify the influence of stress/strain distribution on PF+B dual phase steel with different bainite contents.The simulation results indicated that an appropriate increase in the bainite content(18%–35%)did not affect the interphase strain difference,but increased the stress distribution in both phases,as a result of enhancing the coordinated deformability of two phases and improving the strength–plasticity matching.When the bainite content increased to 53%,the stress/strain difference between the two phases was greatly increased,and plastic damage between the two phases was caused by the reduction of the coordinated deformability.展开更多
In this study, a high-carbon nano-bainitic GCr15Si1Mo bearing steel was investigated. Specifically, the effects of content and size of undissolved carbides on the microstructure and transformation kinetics of nano-bai...In this study, a high-carbon nano-bainitic GCr15Si1Mo bearing steel was investigated. Specifically, the effects of content and size of undissolved carbides on the microstructure and transformation kinetics of nano-bainite were analyzed. The results demonstrated that after prolonged austempering at low temperatures, the mixed microstructure composed of nano-bainite (NB), undissolved carbides (UC), and retained austenite (RA) was obtained in GCr15SiMo steel. When the experimental steel was austenitized at 900 ℃, the undissolved carbides gradually dissolved until reaching a stable state with increasing holding time. Furthermore, at the same austempering temperature, despite different volume fractions of undissolved carbides in the substrate, the volume fractions of nano-bainite in the final microstructures remained essentially the same. Moreover, the higher the content of undissolved carbides in steel, the faster the transformation rate of nano-bainite and the shorter the total transformation time.展开更多
Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,fo...Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,focusing on the effect of dislocations introduced by warm deformation.We show that the bainite transformation in the studied medium Mn steel exhibits extremely sluggish kinetics(on a time scale of days),concurrent with the pearlite formation.The introduced dislocations can significantly accelerate bainite transformation kinetics while also facilitating the pearlite reaction.This is likely the first report on the simultaneous occurrence of these two solid-state reactions in medium Mn steels.With respect to the roles of dislocations in the acceleration of bainite transformation observed in this work,we propose a new‘carbon depletion mechanism’,in which dislocations-stimulated pearlite formation makes a twofold contribution:facilitating the formation of bainitic ferrite sub-units to further enhance the autocatalytic effect and preventing the carbon enrichment in the remaining austenite.On this basis,a physical model is developed to quantitatively understand the bainite transformation kinetics considering the effect of concurrent pearlite formation,revealing good agreements between model descriptions and experiment results.Our findings,herein,offer fundamental insights into the bainite transformation in medium Mn steels and uncover a previously unidentified role played by introduced dislocations in influencing the kinetics of bainite formation,which may guide its future application in manipulating microstructure for the development of advanced high-strength steels.展开更多
The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75 V rail before and after normalizing treatment were studied by cyclic impact tests.The experiment indicated that the ...The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75 V rail before and after normalizing treatment were studied by cyclic impact tests.The experiment indicated that the impact wear volume of the joints increased with the increasing number of impact cycles.The main wear mechanisms include pitting wear,mild fatigue wear,delamination wear,and fatigue wear,and plastic deformation was the primary impact wear mechanism.Among them,fatigue wear had the greatest influence on wear volume,while other wear mechanisms had limited effect.The impact wear resistance of the base material was better than that of the heat-affected zone.Normalizing treatment was beneficial to improving the impact wear resistance of welded joints owing to its effect to promote pearlite recovery,grain refinement,and uniform distribution of grains.The martensite generated in the rail welded joints aggravated the impact wear damage to the materials,which should be avoided.展开更多
The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(ma...The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(martensite start tem-perature),which were subjected to tensile tests at 20 and 450℃,respectively.The results show that compared to room temperature(20℃)tensile properties,the uniform elongation of the sample at high temperature(450℃)significantly decreased.Specifically,the uniform elongation of the sample austempered above Ms decreased from 8.0%to 3.5%,and the sample austempered below Ms decreased from 10.9%to 3.1%.Additionally,the tensile strength of the sample austempered above Ms significantly decreased(from 1281 to 912 MPa),and the sample austempered below Ms slightly decreased(from 1010 to 974 MPa).This was due to the high carbon content(1.60 wt.%),high mechanical stability,low thermal stability for the retained austenite of the sample austempered below Ms.Besides,the retained austenite decomposed at high temper-atures,the carbon content and transformation driving force were significantly reduced,the transformation rate increased,and the phase transformation content reduced.展开更多
The effect of the amount of isothermal martensite and bainite on the microstructure and properties in a medium-carbon quenching and partitioning(Q&P)steel was investigated by designing the different Q&P treatm...The effect of the amount of isothermal martensite and bainite on the microstructure and properties in a medium-carbon quenching and partitioning(Q&P)steel was investigated by designing the different Q&P treatment parameters.The results show that the amount of isothermal martensite increased gradually with the increase in quenching time.The increase in isothermal martensite amount improved the product of strength and elongation(PSE)of Q&P steels.In addition,the increase in carbides amount and the recovery in prior martensite with longer partitioning time led to an increase in PSE first and then,a decrease.It implies that a higher PSE could be obtained by the selection of a suitable partitioning time.Furthermore,the effect of bainite transformation during partitioning on PSE was investigated by designing the different partitioning temperatures,including 300,400(below bainite starting temperature,B_(s))and 480℃(above B_(s)).The results show that compared with the samples partitioned at temperature above B_(s),the bainite transformation was only detected when the samples were partitioned at temperature below B_(s).The bainite transformation amount increased with the decreasing partitioning temperature,leading to the inhibition of carbides precipitation and more stable RA and thus,resulting in the highest PSE.展开更多
A novel ultra-high-strength bainitic steel was designed.The analysis of its mechanical properties by quasistatic testing showed that upper bainitic steel exhibited an ultimate tensile strength of 2 260 MPa(engineerin...A novel ultra-high-strength bainitic steel was designed.The analysis of its mechanical properties by quasistatic testing showed that upper bainitic steel exhibited an ultimate tensile strength of 2 260 MPa(engineering stress)and an ultimate compressive strength of more than 2 700MPa(true stress).The ultra-high strength of upper bainitic steel was mainly attributed to untempered martensite and upper bainite with a feather-like microstructure.Moreover,lower bainitic steel demonstrated an ultimate tensile strength of 1 922 MPa(engineering stress)and an ultimate compressive strength of 2 500MPa(true stress).The ultra-high strength of lower bainitic steel was primarily due to untempered martensite and lower bainite with an acicular microstructure.The untempered martensite in the two kinds of bainitic steels was produced in different ways.The dynamic test results showed that the ultimate compressive strengths of the two bainitic steels were maintained at 1 600MPa(true stress)under high strain rates(1 100and2 200s-1)at 600℃,because of the added tungsten,confirming the satisfactory hot hardness property of the steel.Furthermore,lower bainitic steel showed better comprehensive mechanical properties than upper bainitic steel.展开更多
The alloying design idea,strengthening-toughening mechanism,microstructure,mechanical performances,development and application in China of new type Mn-series bainitic steels are introduced.Mn-series air-cooling bainit...The alloying design idea,strengthening-toughening mechanism,microstructure,mechanical performances,development and application in China of new type Mn-series bainitic steels are introduced.Mn-series air-cooling bainitic steels including granular bainitic steels,FGBA /BG duplex steels,CFB/M duplex steels,medium carbon bainite/martensite steels,cast bainitic steels are presented.The invented idea mechanical performances,development and application of second generation of Mn-series bainitic steels,i.e.water quenching Mn-series bainitic steels invented by the authors newly are introduced.The water quenching Mn-series bainitic steels cover severe series steels containing ultra-low carbon,low-low carbon,medium-low carbon,and high-low carbon content etc,which can reduce the amount of alloying content,increase hardening capability and improve weldability.It should be pointed out that the application of both air cooling and water quenching Mn-series bainitic steels are complementary and mutually reinforcing,and the new type Mn-series bainitic steels can meet the performance requirements of most steels used in engineering structure.Some newest technologies of Mn-series bainitic steels in China are discussed in this paper.It is suggested that the significance of the development of the Mn-series bainitic steels can be summarized as:significantly reducing costs of both raw materials and production;good combination of strength and toughness;excellent weldability;simple procedure;large savings in energy resources and reduced environmental pollution.展开更多
Bearings are the most important component of nearly all mechanical equipment, as they guarantee the steady running of the equipment, which is especially important for high-end equipment such as highspeed trains and sh...Bearings are the most important component of nearly all mechanical equipment, as they guarantee the steady running of the equipment, which is especially important for high-end equipment such as highspeed trains and shield tunneling machines. Requirements regarding the quality of bearings are increasing with the rapid development in technology. A country’s bearings manufacturing level directly reflects the level of that country’s steel metallurgy and machinery manufacturing. The performance of the bearing steel is the critical factor that determines the quality of a bearing. The development of new bearing steel with higher performance is the ambition of material researchers and the expectation of the manufacturing industry. Many famous bearing manufacturing enterprises are competing to develop the new generation of bearing steel. Nanostructured bainitic bearing steel (NBBS), which is a newly developed bearing steel, not only possesses high strength and toughness, but also exhibits excellent wear resistance and rolling contact fatigue (RCF) resistance. In recent years, relevant achievements in NBBS in China have led to significant progress in this field. NBBS was first used in China to manufacture large bearings for wind turbines and heavy-duty bearings, with excellent performance. As a result, NBBS and its corresponding heat-treatment process have been included in the national and industry standards for the first time. The bearing industry considers the exploitation of NBBS to be epoch-making, and has termed this kind of bearing as the second generation of bainitic bearing. In this paper, the development of NBBS is reviewed in detail, including its advantages and disadvantages. Further research directions for NBBS are also proposed.展开更多
The effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC low alloy ultra-high strength steel has been studied in the present work. For this purpose, samples aust...The effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC low alloy ultra-high strength steel has been studied in the present work. For this purpose, samples austenitized at 910℃ for 40 min were quenched in three different ways. Some of the samples were directly oil-quenched, some others were quenched in salt bath at 330 ℃ and the remaining samples were quenched in salt bath at 425 ℃ for various holding times. All samples were tempered at 200 ℃ for 2 h. Microstructures were examined by optical microscopy (OM) and scanning electron microscopy (SEM). Fracture surfaces also were studied by SEM. Results showed that the mixed microstructure containing martensite and 28 vol.% of the lower bainite exhibited higher yield and tensile strengths than the fully martensitic microstructure. This could be mainly attributed to the partitioning of the prior austenite grains by the lower bainite and enhancing the strength of lower bainite in the mixed microstructure by plastic constraint. Charpy V-notch (CVN) impact energy and ductility were improved by increasing the volume fraction of the lower bainite. This is not the case about the mixed microstructure containing the upper bainite and martensite. As a result, the tensile and CVN impact properties of mixed upper bainite-martensite microstructure are lower than those of the fully martensitic microstructure. Finally, fractography studies showed cleavage fracture at the surface of CVN impact specimens with martensitic and upper bainitic microstructures confirming the tendency to brittle behavior.展开更多
The development and mechanical performances of new type air-cooled Mn series bainitic steels including granular bainitic steels, FGBA/BG duplex steels, CFB/M duplex steels, medium carbon bainite/martensite steels, cas...The development and mechanical performances of new type air-cooled Mn series bainitic steels including granular bainitic steels, FGBA/BG duplex steels, CFB/M duplex steels, medium carbon bainite/martensite steels, cast bainitic steels invented by the authors are summarized. The novel series of bainitic steels are alloyed with Mn, and several series bainitic duplex microstructures can be easily obtained under the condition of air cooling through unique composition design. The invented idea, the principle of alloying design, the strengthening mechanism, and the evolution of the microstructure of new type air cooled Mn series bainitic steels are presented. Furthermore, the applications in different fields of these Mn series air cooled bainitic steels with different strength level are also introduced. It is suggested that the significance of the development of the air cooled Mn series bainitic steel can be summarized as follows: reducing costs of both raw materials and production; good combination of strength and toughness; self-hardening with high bainitic hardenahility by air cooling from hot working without additional quenching-tempering treatment or quenching procedure; large savings in energy resources; and reduced environmental pollution.展开更多
Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate ...Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed.展开更多
CCT curves of Mn-Si steels with different manganese contents or carbon contents were determined. The results show that the transformation range of bainite can be separated from that of ferrite when the manganese conte...CCT curves of Mn-Si steels with different manganese contents or carbon contents were determined. The results show that the transformation range of bainite can be separated from that of ferrite when the manganese content approaches a certain content, and the incubation period of ferrite increases more significantly than that of bainite transformation with the increase of carbon content in Mn-Si steels. Furthermore, water-cooled bainitic steels without adding expensive alloying element were developed. Granular bainite was obtained when a bar with diameter of 300 mm was cooled by water, and a mixed microstructure of granular bainite and martensite was obtained in watercooled plate with thickness of 40 mm. The developed water-cooled bainitic Steels containing no expensive alloying element showed a good combination of strength and toughness. The tensile strength, yield strength, and toughness (AKU at --20℃ ) of bar with diameter of 300 mm after water cooling were higher than 850 MPa, 620 MPa, and 65 J, respectively, and those of plate with thickness of 40mm after water cooling were higher than 1000 MPa, 800 MPa, and 50J, respectively.展开更多
The growth rates of bainite plates in an Fe-C-Mn-Si superbainitie steel were investigated by in situ observation. The lengthening rates of ferrite bainite during both cooling and isothermal holding processes were obse...The growth rates of bainite plates in an Fe-C-Mn-Si superbainitie steel were investigated by in situ observation. The lengthening rates of ferrite bainite during both cooling and isothermal holding processes were observed and the growth rates of bainite plates nucleating at grain boundaries, within grains and on preformed bainite were measured. It is indicated that the lengthening rates of bainite plates during the cooling and isothermal processes were different, and that the growth rates of bainite plates nucleating at different types of sites also demon- strated diversity. The bainite plates initiating at [vain boundaries during cooling grew the fastest, while the plates nucleating on preformed bainite did the slowest. However, the growth rate of the bainite plates nucleating at grain boundaries during isothermal transformation de- creased the most, whereas the bainite plates initiating within grains grew the fastest. In addition, the growth rate of ferrite bainite in the study supported the diffusion transformation mechanism of bainite from the viewooint of ~rowth rate.展开更多
In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at ...In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at 850, 1000, and 1100℃ for 30 min. A grain growth model was proposed based on experimental results. It is indicated that the austenite grain size increases with austenitizing temperature and holding time. When the austenitizing temperature is above 1100℃, the austenite grains grow rapidly, and abnormal austenite grains occur. In addition, the effect of heating rate on austenite grain growth was investigated, and the relation between austenite grains and bainite morphology after bainitic transformations was also discussed.展开更多
The superiorities of air-cooled bainitic steels were described. A series of air-cooled bainitic steels containing manganese were developed and presented, which include low carbon granular bainitic steels, low carbon g...The superiorities of air-cooled bainitic steels were described. A series of air-cooled bainitic steels containing manganese were developed and presented, which include low carbon granular bainitic steels, low carbon grain-boundary allotriomorphic ferrite/granular bainite dual phase steels, medium and medium high carbon bainite/martensite dual phase steel, low carbon carbide free bainite/martensite dual phase steels and casting bainitic steels. The development of ultra-low carbon bainitic steels in China was also introduced.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52274392 and 52104381)Natural Science Foundation of Hubei Province(No.2023AFB023)Knowledge Innovation Program of Wuhan-Basi Research(No.2023010201010133).
文摘The integration of boronizing and austempering termed boro-austempering treatment is a new processing route for preparing high strength bainitic steel with high surface hardness and high corrosion resistance.The microstructure and properties of a medium-carbon bainitic steel prepared by boro-austempering treatment were characterized and analyzed.The results show that a single Fe_(2)B layer on bainite substrate was obtained with surface hardness of~1400 HV,and the critical load for adhesive failure of borided layer reached 73.6 N.The silicon-rich α-Fe phase in transition zone was clarified as ferrite,which was formed at the beginning stage of cooling process from boronizing to low-temperature bainite transformation.Moreover,the relative potential differences between Fe_(2)B and bainite matrix,and ferrite and bainite matrix were 75 and 92 mV,respectively,with bainite matrix acting as active anode,indicating that the corrosion resistances of Fe2B and ferrite were better than that of bainite.
基金Funded by Inner Mongolia Autonomous Region Science and Technology Program(No.2023YFHH0036)Natural Science Foundation of Inner Mongolia(No.2024LHMS05033)the Basic Scientific Research Fees for Colleges and Universities Directly under the Inner Mongolia(Nos.2023QNJS002,2023YXXS007,2024YXXS039)。
文摘a-N curves of fatigue crack growth of U20Mn bainite rail after different heat treatment process were studied(The temperature is cooled from 900 to 20℃,the cooling rate was 0.5℃/s,1℃/s and salt bath isothermal respectively),the Paris formula of fatigue crack growth was fitted linearly,and the material parameters C and n were measured.The results show that the sample with cooling rate of 0.5℃/s has the fastest crack growth rate,and the sample with salt bath isothermal has the slowest crack growth rate.The coarse M/A islands with irregular shape in bainite structure with cooling rate of 0.5℃/s has poor resistance to fatigue crack propagation,which is not conducive to improving the fatigue performance.However,the sample with salt bath isothermal has longer fatigue life.Due to the combination of bainitie lamellar and retained austenite distributed between them,the salt bath isothermal sample can effectively improve the strength and toughness of bainite steel.The sample with cooling rate of 0.5℃/s is mainly composed of granular bainitie structure,and the fatigue crack growth trajectory is generally gentle without large angle deflection,the sample with salt bath isothermal is mainly composed of bainite lamellar structure,and the fatigue crack growth trajectory is not straight,with a large number of Z-shaped deflection.The fatigue cracks are prone to produce branch cracks at the stress concentration of propagation deflection,and the branch crack consumes the energy of the main fatigue cracks,thus reducing the fatigue crack growth rate and improving fatigue life.
基金supported by the National Key R&D Program Young Scientists Project(2021YFB3703500)National Natural Science Foundation of China(52001110,52122410,52374406),S&T Program of Hebei(23311004D)+1 种基金Natural Science Foundation of Hebei Province(E2023203259)Science and Technology Project of Yantai(2022ZDCX002).
文摘The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume element simulations.The results reveal that as the austempering temperature increases from low to intermediate,the optimal balance of properties shifts from strength-toughness to plasticity-toughness.The formation of fine bainitic ferrite plates and bainite sheaves under low austempering temperature(270℃)enhances both strength and toughness.Conversely,the wide size and shape distribution of the retained austenite(RA)obtained through austempering at intermediate temperature(350℃)contribute to increased work-hardening capacity,resulting in enhanced plasticity.The volume fraction of the ductile film-like RA plays a crucial role in enhancing impact toughness under relatively higher austempering temperatures.In the simulations of tensile deformation,the concentration of equivalent plastic strain predominantly manifests in the bainitic ferrite neighboring the martensite,whereas the equivalent plastic strain evenly spreads between the thin film-like retained austenite and bainitic ferrite.It is predicted that the cracks will occur at the interface between martensite and bainitic ferrite where the strain is concentrated,and eventually propagate along the strain failure zone.
基金support from the National Natural Science Foundation of China(Grant Nos.52201101 and 52274372)the National Key R&D Program of China(2021YFB3702404)the Fundamental Research Funds for the Central Universities(FRF-TP-22-013A1)。
文摘The microstructure evolution and bainitic transformation of an Fe-0.19C-4.03Mn-1.48Si steel subjected to near-M_(s)austempering treatment were systematically investigated by combining dilatometer,X-ray diffraction,and electron microscopy.Three additional austempering treatments with isothermal temperatures above M_(s)were used as benchmarks.Results show that the incubation period for the bainitic transformation occurs when the medium Mn steel is treated with the austempering temperature above M_(s).However,when subjected to near-M_(s)isothermal treatment,the medium Mn steel does not show an incubation period and has the fastest bainitic transformation rate.Moreover,the largest volume fraction of bainite with a value of 74.7%is obtained on the condition of near-M_(s)austempering treatment after cooling to room temperature.Dilatometer and microstructure evolution analysis indicates that the elimination of the incubation period and the fastest rate of bainitic transformation are related to the preformed martensite.The advent of preformed martensite allows the specimen to generate more bainite in a limited time.Considering bainitic ferrite nucleation at austenite grain boundaries and through autocatalysis at ferrite/austenite interfaces,a model is established to understand the kinetics of bainite formation and it can describe the nucleation rate of bainitic transformation well when compared to the experimental results.
基金supported by the Project of Liaoning Marine Economic Development(Development of high strength pipeline steel for submarine oil and gas transmission)State Key Laboratory of Metal Material for Marine Equipment and Application Funding(No.SKLMEA-K202205).
文摘The phase volume fraction has an important role in the match of the strength and plasticity of dual phase steel.The different bainite contents(18–53 vol.%)in polygonal ferrite and bainite(PF+B)dual phase steel were obtained by controlling the relaxation finish temperature during the rolling process.The effect of bainite volume fraction on the tensile deformability was systematically investigated via experiments and crystal plasticity finite element model(CPFEM)simulation.The experimental results showed that the steel showed optimal strain hardenability and strength–plasticity matching when the bainite reached 35%.The 3D-CPFEM models with the same grain size and texture characters were established to clarify the influence of stress/strain distribution on PF+B dual phase steel with different bainite contents.The simulation results indicated that an appropriate increase in the bainite content(18%–35%)did not affect the interphase strain difference,but increased the stress distribution in both phases,as a result of enhancing the coordinated deformability of two phases and improving the strength–plasticity matching.When the bainite content increased to 53%,the stress/strain difference between the two phases was greatly increased,and plastic damage between the two phases was caused by the reduction of the coordinated deformability.
基金support from the National Natural Science Foundation of China(Nos.52001105 and 52122410)the Hebei Natural Science Foundation(Nos.E2022402107,E2023203259 and E2020402101)+1 种基金the Science and Technology Project of Hebei Education Department(No.BJ2021012)the Central Guidance for Local Science and Technology Development Funding Project(No.236Z1021G).
文摘In this study, a high-carbon nano-bainitic GCr15Si1Mo bearing steel was investigated. Specifically, the effects of content and size of undissolved carbides on the microstructure and transformation kinetics of nano-bainite were analyzed. The results demonstrated that after prolonged austempering at low temperatures, the mixed microstructure composed of nano-bainite (NB), undissolved carbides (UC), and retained austenite (RA) was obtained in GCr15SiMo steel. When the experimental steel was austenitized at 900 ℃, the undissolved carbides gradually dissolved until reaching a stable state with increasing holding time. Furthermore, at the same austempering temperature, despite different volume fractions of undissolved carbides in the substrate, the volume fractions of nano-bainite in the final microstructures remained essentially the same. Moreover, the higher the content of undissolved carbides in steel, the faster the transformation rate of nano-bainite and the shorter the total transformation time.
基金support from National Key Research and Development Program of China(No.2019YFA0209900)National Natural Science Foundation of China(No.52130102)+5 种基金Research Grants Council of Hong Kong(No.R7066–18)Guangzhou Municipal Science and Technology Project(No.202007020007)Guangdong Basic and Applied Basic Research Foundation of China(No.2020B1515130007)support from National Natural Science Foundation of China(No.52130110)support from National Natural Science Foundation of China(No.52271116)Hong Kong Scholars Program(No.XJ2019029).
文摘Bainite transformation has yet to be utilized and even thoroughly studied in medium Mn steels.Here,we investigate the isothermal bainite transformation in a 10Mn steel at 450°C experimentally and theoretically,focusing on the effect of dislocations introduced by warm deformation.We show that the bainite transformation in the studied medium Mn steel exhibits extremely sluggish kinetics(on a time scale of days),concurrent with the pearlite formation.The introduced dislocations can significantly accelerate bainite transformation kinetics while also facilitating the pearlite reaction.This is likely the first report on the simultaneous occurrence of these two solid-state reactions in medium Mn steels.With respect to the roles of dislocations in the acceleration of bainite transformation observed in this work,we propose a new‘carbon depletion mechanism’,in which dislocations-stimulated pearlite formation makes a twofold contribution:facilitating the formation of bainitic ferrite sub-units to further enhance the autocatalytic effect and preventing the carbon enrichment in the remaining austenite.On this basis,a physical model is developed to quantitatively understand the bainite transformation kinetics considering the effect of concurrent pearlite formation,revealing good agreements between model descriptions and experiment results.Our findings,herein,offer fundamental insights into the bainite transformation in medium Mn steels and uncover a previously unidentified role played by introduced dislocations in influencing the kinetics of bainite formation,which may guide its future application in manipulating microstructure for the development of advanced high-strength steels.
基金The work was supported by the National Key Research and Development Project(2017YFB0304500).
文摘The impact wear behavior and damage mechanism of dissimilar welded joints between U26Mn frog and U75 V rail before and after normalizing treatment were studied by cyclic impact tests.The experiment indicated that the impact wear volume of the joints increased with the increasing number of impact cycles.The main wear mechanisms include pitting wear,mild fatigue wear,delamination wear,and fatigue wear,and plastic deformation was the primary impact wear mechanism.Among them,fatigue wear had the greatest influence on wear volume,while other wear mechanisms had limited effect.The impact wear resistance of the base material was better than that of the heat-affected zone.Normalizing treatment was beneficial to improving the impact wear resistance of welded joints owing to its effect to promote pearlite recovery,grain refinement,and uniform distribution of grains.The martensite generated in the rail welded joints aggravated the impact wear damage to the materials,which should be avoided.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(52071238)Leading Innovation and Entrepreneurship Team in Zhejiang Province(2021R01020)+2 种基金the Key Research and Development Program of Hubei Province(2021BAA057)Science and Technology Program of Guangxi Province(AA22068080)the 111 Project.
文摘The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(martensite start tem-perature),which were subjected to tensile tests at 20 and 450℃,respectively.The results show that compared to room temperature(20℃)tensile properties,the uniform elongation of the sample at high temperature(450℃)significantly decreased.Specifically,the uniform elongation of the sample austempered above Ms decreased from 8.0%to 3.5%,and the sample austempered below Ms decreased from 10.9%to 3.1%.Additionally,the tensile strength of the sample austempered above Ms significantly decreased(from 1281 to 912 MPa),and the sample austempered below Ms slightly decreased(from 1010 to 974 MPa).This was due to the high carbon content(1.60 wt.%),high mechanical stability,low thermal stability for the retained austenite of the sample austempered below Ms.Besides,the retained austenite decomposed at high temper-atures,the carbon content and transformation driving force were significantly reduced,the transformation rate increased,and the phase transformation content reduced.
基金The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China(No.52104381)the China Postdoctoral Science Foundation(No.2023M732721)also the help on microstructure analysis from Dr.Zhen Wang at the Analytical and Testing Center of Wuhan University of Science and Technology.
文摘The effect of the amount of isothermal martensite and bainite on the microstructure and properties in a medium-carbon quenching and partitioning(Q&P)steel was investigated by designing the different Q&P treatment parameters.The results show that the amount of isothermal martensite increased gradually with the increase in quenching time.The increase in isothermal martensite amount improved the product of strength and elongation(PSE)of Q&P steels.In addition,the increase in carbides amount and the recovery in prior martensite with longer partitioning time led to an increase in PSE first and then,a decrease.It implies that a higher PSE could be obtained by the selection of a suitable partitioning time.Furthermore,the effect of bainite transformation during partitioning on PSE was investigated by designing the different partitioning temperatures,including 300,400(below bainite starting temperature,B_(s))and 480℃(above B_(s)).The results show that compared with the samples partitioned at temperature above B_(s),the bainite transformation was only detected when the samples were partitioned at temperature below B_(s).The bainite transformation amount increased with the decreasing partitioning temperature,leading to the inhibition of carbides precipitation and more stable RA and thus,resulting in the highest PSE.
文摘A novel ultra-high-strength bainitic steel was designed.The analysis of its mechanical properties by quasistatic testing showed that upper bainitic steel exhibited an ultimate tensile strength of 2 260 MPa(engineering stress)and an ultimate compressive strength of more than 2 700MPa(true stress).The ultra-high strength of upper bainitic steel was mainly attributed to untempered martensite and upper bainite with a feather-like microstructure.Moreover,lower bainitic steel demonstrated an ultimate tensile strength of 1 922 MPa(engineering stress)and an ultimate compressive strength of 2 500MPa(true stress).The ultra-high strength of lower bainitic steel was primarily due to untempered martensite and lower bainite with an acicular microstructure.The untempered martensite in the two kinds of bainitic steels was produced in different ways.The dynamic test results showed that the ultimate compressive strengths of the two bainitic steels were maintained at 1 600MPa(true stress)under high strain rates(1 100and2 200s-1)at 600℃,because of the added tungsten,confirming the satisfactory hot hardness property of the steel.Furthermore,lower bainitic steel showed better comprehensive mechanical properties than upper bainitic steel.
文摘The alloying design idea,strengthening-toughening mechanism,microstructure,mechanical performances,development and application in China of new type Mn-series bainitic steels are introduced.Mn-series air-cooling bainitic steels including granular bainitic steels,FGBA /BG duplex steels,CFB/M duplex steels,medium carbon bainite/martensite steels,cast bainitic steels are presented.The invented idea mechanical performances,development and application of second generation of Mn-series bainitic steels,i.e.water quenching Mn-series bainitic steels invented by the authors newly are introduced.The water quenching Mn-series bainitic steels cover severe series steels containing ultra-low carbon,low-low carbon,medium-low carbon,and high-low carbon content etc,which can reduce the amount of alloying content,increase hardening capability and improve weldability.It should be pointed out that the application of both air cooling and water quenching Mn-series bainitic steels are complementary and mutually reinforcing,and the new type Mn-series bainitic steels can meet the performance requirements of most steels used in engineering structure.Some newest technologies of Mn-series bainitic steels in China are discussed in this paper.It is suggested that the significance of the development of the Mn-series bainitic steels can be summarized as:significantly reducing costs of both raw materials and production;good combination of strength and toughness;excellent weldability;simple procedure;large savings in energy resources and reduced environmental pollution.
基金the Natural Science Foundation of China (51831008 and 51471146)the National High Technology Research and Development Program of China (2012AA03A504)+2 种基金the National Science Foundation for Distinguished Young Scholars of China (50925522)the China Postdoctoral Science Foundation (2018M631762)the Youth Talent Projects of Colleges in Hebei Province (BJ2018056).
文摘Bearings are the most important component of nearly all mechanical equipment, as they guarantee the steady running of the equipment, which is especially important for high-end equipment such as highspeed trains and shield tunneling machines. Requirements regarding the quality of bearings are increasing with the rapid development in technology. A country’s bearings manufacturing level directly reflects the level of that country’s steel metallurgy and machinery manufacturing. The performance of the bearing steel is the critical factor that determines the quality of a bearing. The development of new bearing steel with higher performance is the ambition of material researchers and the expectation of the manufacturing industry. Many famous bearing manufacturing enterprises are competing to develop the new generation of bearing steel. Nanostructured bainitic bearing steel (NBBS), which is a newly developed bearing steel, not only possesses high strength and toughness, but also exhibits excellent wear resistance and rolling contact fatigue (RCF) resistance. In recent years, relevant achievements in NBBS in China have led to significant progress in this field. NBBS was first used in China to manufacture large bearings for wind turbines and heavy-duty bearings, with excellent performance. As a result, NBBS and its corresponding heat-treatment process have been included in the national and industry standards for the first time. The bearing industry considers the exploitation of NBBS to be epoch-making, and has termed this kind of bearing as the second generation of bainitic bearing. In this paper, the development of NBBS is reviewed in detail, including its advantages and disadvantages. Further research directions for NBBS are also proposed.
文摘The effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC low alloy ultra-high strength steel has been studied in the present work. For this purpose, samples austenitized at 910℃ for 40 min were quenched in three different ways. Some of the samples were directly oil-quenched, some others were quenched in salt bath at 330 ℃ and the remaining samples were quenched in salt bath at 425 ℃ for various holding times. All samples were tempered at 200 ℃ for 2 h. Microstructures were examined by optical microscopy (OM) and scanning electron microscopy (SEM). Fracture surfaces also were studied by SEM. Results showed that the mixed microstructure containing martensite and 28 vol.% of the lower bainite exhibited higher yield and tensile strengths than the fully martensitic microstructure. This could be mainly attributed to the partitioning of the prior austenite grains by the lower bainite and enhancing the strength of lower bainite in the mixed microstructure by plastic constraint. Charpy V-notch (CVN) impact energy and ductility were improved by increasing the volume fraction of the lower bainite. This is not the case about the mixed microstructure containing the upper bainite and martensite. As a result, the tensile and CVN impact properties of mixed upper bainite-martensite microstructure are lower than those of the fully martensitic microstructure. Finally, fractography studies showed cleavage fracture at the surface of CVN impact specimens with martensitic and upper bainitic microstructures confirming the tendency to brittle behavior.
基金Item Sponsored by National Basic Research Programof China(2004CB619105)
文摘The development and mechanical performances of new type air-cooled Mn series bainitic steels including granular bainitic steels, FGBA/BG duplex steels, CFB/M duplex steels, medium carbon bainite/martensite steels, cast bainitic steels invented by the authors are summarized. The novel series of bainitic steels are alloyed with Mn, and several series bainitic duplex microstructures can be easily obtained under the condition of air cooling through unique composition design. The invented idea, the principle of alloying design, the strengthening mechanism, and the evolution of the microstructure of new type air cooled Mn series bainitic steels are presented. Furthermore, the applications in different fields of these Mn series air cooled bainitic steels with different strength level are also introduced. It is suggested that the significance of the development of the air cooled Mn series bainitic steel can be summarized as follows: reducing costs of both raw materials and production; good combination of strength and toughness; self-hardening with high bainitic hardenahility by air cooling from hot working without additional quenching-tempering treatment or quenching procedure; large savings in energy resources; and reduced environmental pollution.
基金Item Sponsored by High Technology Development Programof China (863) (2001AA332020) and National Natural ScienceFoundation of China (50271015)
文摘Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed.
基金Item Sponsored by National High Technology Research and Development Program("863"Program) of China (2007AA03Z511)
文摘CCT curves of Mn-Si steels with different manganese contents or carbon contents were determined. The results show that the transformation range of bainite can be separated from that of ferrite when the manganese content approaches a certain content, and the incubation period of ferrite increases more significantly than that of bainite transformation with the increase of carbon content in Mn-Si steels. Furthermore, water-cooled bainitic steels without adding expensive alloying element were developed. Granular bainite was obtained when a bar with diameter of 300 mm was cooled by water, and a mixed microstructure of granular bainite and martensite was obtained in watercooled plate with thickness of 40 mm. The developed water-cooled bainitic Steels containing no expensive alloying element showed a good combination of strength and toughness. The tensile strength, yield strength, and toughness (AKU at --20℃ ) of bar with diameter of 300 mm after water cooling were higher than 850 MPa, 620 MPa, and 65 J, respectively, and those of plate with thickness of 40mm after water cooling were higher than 1000 MPa, 800 MPa, and 50J, respectively.
基金financially supported by the National Natural Science Foundation of China(No.51274154)the National High-Tech Research and Development Program of China(No.2012AA03A504)+1 种基金the State Key Laboratory of Development and Application Technology of Automotive Steels(Baosteel Group)the Key Project of Hubei Education Committee,China(No.20121101)
文摘The growth rates of bainite plates in an Fe-C-Mn-Si superbainitie steel were investigated by in situ observation. The lengthening rates of ferrite bainite during both cooling and isothermal holding processes were observed and the growth rates of bainite plates nucleating at grain boundaries, within grains and on preformed bainite were measured. It is indicated that the lengthening rates of bainite plates during the cooling and isothermal processes were different, and that the growth rates of bainite plates nucleating at different types of sites also demon- strated diversity. The bainite plates initiating at [vain boundaries during cooling grew the fastest, while the plates nucleating on preformed bainite did the slowest. However, the growth rate of the bainite plates nucleating at grain boundaries during isothermal transformation de- creased the most, whereas the bainite plates initiating within grains grew the fastest. In addition, the growth rate of ferrite bainite in the study supported the diffusion transformation mechanism of bainite from the viewooint of ~rowth rate.
基金the National Natural Science Foundation of China(No.51274154)the National High-Tech Research and Development Program of China(No.2012AA03A504)+1 种基金the State Key Laboratory of Development and Application Technology of Automo-tive Steels(Baosteel Group)the Key Project of Hubei Education Committee(No.D20121101)
文摘In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel were conducted on a high-temperature laser scanning confocal microscope during continuous heating and subsequent isothermal holding at 850, 1000, and 1100℃ for 30 min. A grain growth model was proposed based on experimental results. It is indicated that the austenite grain size increases with austenitizing temperature and holding time. When the austenitizing temperature is above 1100℃, the austenite grains grow rapidly, and abnormal austenite grains occur. In addition, the effect of heating rate on austenite grain growth was investigated, and the relation between austenite grains and bainite morphology after bainitic transformations was also discussed.
文摘The superiorities of air-cooled bainitic steels were described. A series of air-cooled bainitic steels containing manganese were developed and presented, which include low carbon granular bainitic steels, low carbon grain-boundary allotriomorphic ferrite/granular bainite dual phase steels, medium and medium high carbon bainite/martensite dual phase steel, low carbon carbide free bainite/martensite dual phase steels and casting bainitic steels. The development of ultra-low carbon bainitic steels in China was also introduced.