期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征图像生成的Android恶意软件检测方法 被引量:3
1
作者 陈非 曹晓梅 王少辉 《计算机技术与发展》 2023年第6期125-132,共8页
目前的传统机器学习方法在Android恶意软件检测上存在特征分布不平衡、检测准确率偏低的问题。针对于此,该文提出一种基于特征图像生成的Android恶意软件检测方法。该方法首先采用特征匹配的方法提取APK文件的权限、API、操作码作为特征... 目前的传统机器学习方法在Android恶意软件检测上存在特征分布不平衡、检测准确率偏低的问题。针对于此,该文提出一种基于特征图像生成的Android恶意软件检测方法。该方法首先采用特征匹配的方法提取APK文件的权限、API、操作码作为特征,并使用改进的FPGrowth算法挖掘各特征的频繁特征项集,以获取有效特征;再利用降噪自编码器(DAE)抽取特征信息和转换特征向量维度,将各特征对应的特征向量转换成单通道图像并在通道维度进行拼接,生成RGB特征图像用于训练和分类;最后构建BaggingCNN分类算法,其集成了多个不同的卷积神经网络(CNN)算法,这些算法均在采用Bootstrap抽样构造的多个子训练集上进行训练,得到若干个子分类器,这些子分类器将用来对表示APK文件的特征图像进行检测,并采取多数投票机制得到最终的检测结果。实验结果表明,该方法生成的特征图像具有较好的表征能力,有利于分类算法的收敛和准确度的提升;其检测准确率达到98.21%,可以有效地检测Android恶意软件。 展开更多
关键词 Android恶意软件 FPGrowth 降噪自编码器 特征图像 baggingcnn
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部