期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Predicting Short-Term Wind Power Generation at Musalpetti Wind Farm: Model Development and Analysis
1
作者 Namal Rathnayake Jeevani Jayasinghe +1 位作者 Rashmi Semasinghe Upaka Rathnayake 《Computer Modeling in Engineering & Sciences》 2025年第5期2287-2305,共19页
In this study,a machine learning-based predictive model was developed for the Musa petti Wind Farm in Sri Lanka to address the need for localized forecasting solutions.Using data on wind speed,air temperature,nacelle ... In this study,a machine learning-based predictive model was developed for the Musa petti Wind Farm in Sri Lanka to address the need for localized forecasting solutions.Using data on wind speed,air temperature,nacelle position,and actual power,lagged features were generated to capture temporal dependencies.Among 24 evaluated models,the ensemble bagging approach achieved the best performance,with R^(2) values of 0.89 at 0 min and 0.75 at 60 min.Shapley Additive exPlanations(SHAP)analysis revealed that while wind speed is the primary driver for short-term predictions,air temperature and nacelle position become more influential at longer forecasting horizons.These findings underscore the reliability of short-term predictions and the potential benefits of integrating hybrid AI and probabilistic models for extended forecasts.Our work contributes a robust and explainable framework to support Sri Lanka’s renewable energy transition,and future research will focus on real-time deployment and uncertainty quantification. 展开更多
关键词 ensemble bagging model machine learning SHAP explainability short-term prediction wind power forecasting
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部