期刊文献+
共找到703篇文章
< 1 2 36 >
每页显示 20 50 100
信息熵改进Bagging-CNN-BILSTM的刀具剩余寿命预测
1
作者 杨化林 董春芳 《重庆理工大学学报(自然科学)》 北大核心 2025年第6期192-199,共8页
针对单一传感器预测精度差、可靠性低的问题,提出一种信息熵改进的Bagging-CNN-BILSTM模型。使用Sureshrink阈值选择方法代替固定阈值进行小波降噪,提取多传感器信号的时域、频域及时频域信息,构建刀具多源信息矩阵。通过计算皮尔逊系... 针对单一传感器预测精度差、可靠性低的问题,提出一种信息熵改进的Bagging-CNN-BILSTM模型。使用Sureshrink阈值选择方法代替固定阈值进行小波降噪,提取多传感器信号的时域、频域及时频域信息,构建刀具多源信息矩阵。通过计算皮尔逊系数与灰色关联度对所提取信号特征进行双重特征降维,获取刀具寿命因子;基于信息熵改进Bagging-CNN-BILSTM模型,优化Bagging中Bootstrap样本重复采样与随机采样。对所提方法在PHM2010数据集上进行验证,实验结果表明:相比未改进Bagging-CNN-BILSTM模型、CNN-BILSTM模型、CNN-LSTM模型、CNN-GRU模型,所提模型的平均绝对误差分别降低44.8%、48.8%、49.6%、58.8%,具有更好的预测精度与可靠性。 展开更多
关键词 刀具寿命预测 多通道信息融合 改进小波降噪 卷积神经网络 样本信息熵 改进bagging模型
在线阅读 下载PDF
一种改进的组合方法mBagging 被引量:1
2
作者 刘汉明 刘赵发 +1 位作者 郑金萍 胡声洲 《赣南师范大学学报》 2020年第3期33-35,共3页
Bagging是一种有代表性的机器学习的组合方法,它在改善弱分类器的稳定性和精度上有着重要的价值,已得到广泛的认可与应用.但它的重抽样技术使其在大数据挖掘中表现不够理想.mBagging是一种对Bagging加以改进的组合方法,克服Bagging一些... Bagging是一种有代表性的机器学习的组合方法,它在改善弱分类器的稳定性和精度上有着重要的价值,已得到广泛的认可与应用.但它的重抽样技术使其在大数据挖掘中表现不够理想.mBagging是一种对Bagging加以改进的组合方法,克服Bagging一些不足,具有更高的统计功效、更低的假阳率和更快的运算速度.研究阐述mBagging的原理,从理论上探讨mBagging相较于Bagging性能更优的机理,并以皮尔逊相关系数作为基分类器,验证了mBagging的有效性. 展开更多
关键词 mbagging 组合方法 bagging 统计功效 算法时间
在线阅读 下载PDF
基于属性Bagging kNN性能的增强
3
作者 张震 胡捍英 《计算机工程》 EI CAS CSCD 北大核心 2005年第15期160-161,171,共3页
提出了用于增强kNN的属性Bagging(ABagging),ABagging通过对属性重抽样而不是对训练实例重抽样来获得多个训练集。kNN对于属性重抽样不稳定,因而ABagging能有效降低kNN的错误率。ABaggingkNN对于不相关属性也有比kNN强得多的抵抗力。另... 提出了用于增强kNN的属性Bagging(ABagging),ABagging通过对属性重抽样而不是对训练实例重抽样来获得多个训练集。kNN对于属性重抽样不稳定,因而ABagging能有效降低kNN的错误率。ABaggingkNN对于不相关属性也有比kNN强得多的抵抗力。另外AbaggingkNN的速度也比BaggingkNN更快。用UCI数据集证明了ABaggingkNN的有效性。 展开更多
关键词 bagging KNN 属性bagging
在线阅读 下载PDF
基于Double-Bagging决策树的基因微阵列数据研究 被引量:1
4
作者 袁科 《湖北汽车工业学院学报》 2009年第2期40-43,共4页
Bagging通过组合不稳定的分类器在很大程度上降低了"弱"学习算法的分类误差。基于Torsten等人提出的Double-Bagging算法,本文对其加以修改并应用于基因微阵列数据的处理。在给定的训练数据集和测试集上试验并比较了多种分类器... Bagging通过组合不稳定的分类器在很大程度上降低了"弱"学习算法的分类误差。基于Torsten等人提出的Double-Bagging算法,本文对其加以修改并应用于基因微阵列数据的处理。在给定的训练数据集和测试集上试验并比较了多种分类器,结果表明Double-Bagging决策树分类精确度优于Bagging决策树和C4.5算法。 展开更多
关键词 Double—bagging算法 Double-bagging决策树 基因微阵列数据 分类器
在线阅读 下载PDF
基于mBagging的随机森林 被引量:6
5
作者 郑金萍 刘赵发 +5 位作者 胡珍珍 李泽南 黎姿 刘汉明 汪廷华 胡声洲 《赣南师范大学学报》 2022年第3期113-115,共3页
随机森林是采用Bagging组合方法集成的决策树集合,在数据分类、预测领域应用广泛.Bagging组合方法在机器学习中具有代表性,但对于实际的大数据挖掘仍存在一些不足.mBagging是基于Bagging组合方法的一种改进,具有更高的统计功效、更低的... 随机森林是采用Bagging组合方法集成的决策树集合,在数据分类、预测领域应用广泛.Bagging组合方法在机器学习中具有代表性,但对于实际的大数据挖掘仍存在一些不足.mBagging是基于Bagging组合方法的一种改进,具有更高的统计功效、更低的假阳率以及更快的运算速度.采用全基因组SNP仿真数据集的实验表明,基于mBagging的随机森林运算速度明显快于传统的随机森林,且在保证OOB袋外错误率不劣化的前提下,判断风险SNP的准确率得到了提高. 展开更多
关键词 mbagging 随机森林 bagging OOB袋外错误率 算法时间
暂未订购
Subagging在个人信用评估中的应用研究 被引量:4
6
作者 刘玉峰 贺昌政 《科技管理研究》 北大核心 2011年第19期188-190,196,共4页
运用集成分类算法bagging的改进模型——subagging试图建立一个专门针对个人信用评估的方法,以期取得更好的预测分类效果。针对个人信用评估中单一分类器的不足,提出了利用分类器的集成进行个人信用评估的方法。利用UCI上的信用数据对... 运用集成分类算法bagging的改进模型——subagging试图建立一个专门针对个人信用评估的方法,以期取得更好的预测分类效果。针对个人信用评估中单一分类器的不足,提出了利用分类器的集成进行个人信用评估的方法。利用UCI上的信用数据对单个分类器、bagging集成分类器以及subagging集成分类器进行实验比较,结果表明,subagging-决策树和subagging-K近邻在样本不独立和不平衡的情况下有效地提高了模型的精准性。结果显示,它们对商业银行控制消费信贷风险具有更好的适用性。 展开更多
关键词 信用评估 个人信用 bagging subagging
在线阅读 下载PDF
基于Bagging的概率神经网络集成分类算法 被引量:43
7
作者 蒋芸 陈娜 +3 位作者 明利特 周泽寻 谢国城 陈珊 《计算机科学》 CSCD 北大核心 2013年第5期242-246,共5页
目前的神经网络较多集中在以BP算法为基础的BP神经网络上。针对BP神经网络的不足,在分析研究概率神经网络和机器学习的基础上,结合集成学习的思想,提出了基于Bagging的概率神经网络集成分类算法。理论分析和实验结果都表明,提出的算法... 目前的神经网络较多集中在以BP算法为基础的BP神经网络上。针对BP神经网络的不足,在分析研究概率神经网络和机器学习的基础上,结合集成学习的思想,提出了基于Bagging的概率神经网络集成分类算法。理论分析和实验结果都表明,提出的算法能够有效地降低分类误差,提高分类准确率,具有较好的泛化能力以及较快的执行速度,能够取得比传统的BP神经网络分类方法更好和更稳定的分类结果。 展开更多
关键词 分类 BP神经网络 概率神经网络 集成学习 bagging
在线阅读 下载PDF
Boosting和Bagging综述 被引量:70
8
作者 沈学华 周志华 +1 位作者 吴建鑫 陈兆乾 《计算机工程与应用》 CSCD 北大核心 2000年第12期31-32,40,共3页
Boosting 和 Bagging 是两种用来提高学习算法准确度的方法,这两种方法通过构造一个预测函数系列,然后以一定的方式将它们组合成一个预测函数.文章将介绍这两种方法以及对他们进行的一些理论分析和实验,并对它们的应用以及将来可能的研... Boosting 和 Bagging 是两种用来提高学习算法准确度的方法,这两种方法通过构造一个预测函数系列,然后以一定的方式将它们组合成一个预测函数.文章将介绍这两种方法以及对他们进行的一些理论分析和实验,并对它们的应用以及将来可能的研究进行讨论. 展开更多
关键词 机器学习 泛化误差 BOOSTING算法 bagging算法
在线阅读 下载PDF
基于Bagging集成学习算法的地震事件性质识别分类 被引量:29
9
作者 任涛 林梦楠 +4 位作者 陈宏峰 王冉冉 李松威 刘晓雨 刘杰 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2019年第1期383-392,共10页
地震台网在监测地震的同时记录到的非天然震动事件会对后续的科研和预报工作造成较大的影响,因此快速准确的对天然震动事件与非天然震动事件加以区分就显得尤为重要.本文针对传统人工方法识别地震事件性质的不足之处,采用Bagging机器学... 地震台网在监测地震的同时记录到的非天然震动事件会对后续的科研和预报工作造成较大的影响,因此快速准确的对天然震动事件与非天然震动事件加以区分就显得尤为重要.本文针对传统人工方法识别地震事件性质的不足之处,采用Bagging机器学习算法对地震事件性质进行区分.首先选取震中距范围在80~200km内的地震数据,之后采用AIC算法自动识别P波到时,进而用处理后的数据训练模型,最后使用测试数据对模型进行评估,准确率可达85%以上.因此,本文提出的方法可以有效地对天然震动事件与非天然震动事件加以区分. 展开更多
关键词 地震事件分类 频谱比值 自相关系数 bagging算法
在线阅读 下载PDF
Bagging偏最小二乘和Boosting偏最小二乘算法的金银花醇沉过程近红外光谱定量模型预测能力研究 被引量:15
10
作者 陈昭 吴志生 +3 位作者 史新元 徐冰 赵娜 乔延江 《分析化学》 SCIE EI CAS CSCD 北大核心 2014年第11期1679-1686,共8页
建立金银花醇沉过程中稳健的近红外光谱(Nearinfraredspectroscopy,NIR)定量模型,为金银花醇沉过程的快速评价提供方法。研究基于金银花醇沉过程绿原酸的NIR数据,通过建立Bagging偏最小二乘(Bagging-PLS)模型、Boosting偏最小二乘(... 建立金银花醇沉过程中稳健的近红外光谱(Nearinfraredspectroscopy,NIR)定量模型,为金银花醇沉过程的快速评价提供方法。研究基于金银花醇沉过程绿原酸的NIR数据,通过建立Bagging偏最小二乘(Bagging-PLS)模型、Boosting偏最小二乘(Boosting-PLS)模型与偏最小二乘(PartialLeastSquares,PLS)模型,实现对模型性能比较;在此基础上,采用组合间隔偏最小二乘法(Synergyintervalpartialleastsquares,siPLS)和竞争自适应抽样(Competitiveadaptivereweightedsampling,CARS)法分别对光谱进行变量筛选,建立模型,实现了对模型预测性能的考察。实验结果表明,Bagging-PLS和Boosting-PLS(潜变量因子数设为10)的预测性能均优于PLS模型。在此基础上,两批样品采用siPLS筛选变量,第一个批次金银花筛选波段820-1029.5nm和1030-1239.5nm,第二个批次金银花醇沉筛选波段为820-959.5nm和960-1099.5nm;采用CARS方法变量筛选,两批样品分别选择5折交叉验证和10折交叉验证,取交叉验证均方根误差(RMSECV)值最小的子集作为最终变量筛选的结果。经过变量筛选的两批金银花醇沉过程中的绿原酸含量Bagging-PLS和Boosting-PLS模型的预测均方根误差(RMSEP)值降低了0.02-0.04g/L,预测相关系数提高了4%-5%。综上,Baggning-PLS和Boosting-PLS算法可作为金银花醇沉过程NIR定量模型的快速预测方法。 展开更多
关键词 过程分析技术 金银花 醇沉 bagging偏最小二乘算法 Boosting偏最小二乘算法
在线阅读 下载PDF
Bagging算法在中文文本分类中的应用 被引量:13
11
作者 张翔 周明全 +1 位作者 耿国华 侯凡 《计算机工程与应用》 CSCD 北大核心 2009年第5期135-137,179,共4页
Bagging算法是目前一种流行的集成学习算法,采用一种改进的Bagging算法Attribute Bagging作为分类算法,通过属性重取样获取多个训练集,以kNN为弱分类器设计一种中文文本分类器。实验结果表明Attribute Bagging算法较Bagging算法有更好... Bagging算法是目前一种流行的集成学习算法,采用一种改进的Bagging算法Attribute Bagging作为分类算法,通过属性重取样获取多个训练集,以kNN为弱分类器设计一种中文文本分类器。实验结果表明Attribute Bagging算法较Bagging算法有更好的分类精度。 展开更多
关键词 ATTRIBUTE bagging bagging 中文文本分类 K-近邻
在线阅读 下载PDF
一种基于Bagging和混淆矩阵的自适应选择性集成 被引量:27
12
作者 毕凯 王晓丹 +1 位作者 姚旭 周进登 《电子学报》 EI CAS CSCD 北大核心 2014年第4期711-716,共6页
为了平衡集成学习中差异性和准确性的关系并提高学习系统的泛化性能,提出一种基于Bagging和混淆矩阵的选择性集成方法.基本思想是通过扰动训练集和特征空间生成基分类器,根据每一个基分类器的混淆矩阵构造一个基分类器间相关性的度量矩... 为了平衡集成学习中差异性和准确性的关系并提高学习系统的泛化性能,提出一种基于Bagging和混淆矩阵的选择性集成方法.基本思想是通过扰动训练集和特征空间生成基分类器,根据每一个基分类器的混淆矩阵构造一个基分类器间相关性的度量矩阵;然后基于相关性度量矩阵对基分类器集合进行子集划分,在每个划分中选择一个基分类器参与集成;最后用多数投票法融合所选基分类器的决策结果,并通过仿真实验验证该方法的有效性. 展开更多
关键词 选择性集成 bagging 算法 混淆矩阵 偏最小二乘
在线阅读 下载PDF
基于PageRank与Bagging的主题爬虫研究 被引量:11
13
作者 张翔 周明全 +1 位作者 李智杰 董丽丽 《计算机工程与设计》 CSCD 北大核心 2010年第14期3309-3312,共4页
为克服主题爬虫主题漂移现象,提高搜索引擎的查准率和查全率,提出了一个基于PageRank算法与Bagging算法的主题爬虫设计方法。将主题爬虫系统分为爬虫爬行模块和主题相关性分析模块。利用一种改进的PageRank算法改善了爬虫的搜索策略,进... 为克服主题爬虫主题漂移现象,提高搜索引擎的查准率和查全率,提出了一个基于PageRank算法与Bagging算法的主题爬虫设计方法。将主题爬虫系统分为爬虫爬行模块和主题相关性分析模块。利用一种改进的PageRank算法改善了爬虫的搜索策略,进行网页遍历与抓取。用向量空间模型表示网页主题,使用Bagging算法构造网页主题分类器进行主题相关性分析,过滤与主题无关网页。实验结果表明,该方法在网页抓取的性能上和主题网页的查准率上都取得较好的效果。 展开更多
关键词 主题爬虫 搜索策略 主题相关性 PAGERANK bagging
在线阅读 下载PDF
KPCA-bagging集成神经网络软测量建模方法 被引量:12
14
作者 夏陆岳 王海宁 +1 位作者 朱鹏飞 潘海天 《信息与控制》 CSCD 北大核心 2015年第5期519-524,共6页
许多化工过程具有机理复杂和强非线性等特点,为了克服常规建模方法存在的不足和提高软测量模型的预测精度,提出一种用于化工过程软测量的核主元分析(KPCA)-bagging集成神经网络建模方法.首先利用KPCA对软测量模型的输入数据进行降维处理... 许多化工过程具有机理复杂和强非线性等特点,为了克服常规建模方法存在的不足和提高软测量模型的预测精度,提出一种用于化工过程软测量的核主元分析(KPCA)-bagging集成神经网络建模方法.首先利用KPCA对软测量模型的输入数据进行降维处理,提取非线性主元并作为模型输入;然后采用bagging集成学习算法得到若干样本子集,通过训练各子集建立多个BP神经网络子模型,采用网格搜索法优化确定各子模型隐含层单元个数与集成模型规模;最后采用岭回归方法实现子模型输出融合,建立KPCA-bagging集成神经网络软测量模型.聚丙烯熔融指数软测量仿真结果表明,采用上述建模方法建立的软测量模型具有较好的预测性能. 展开更多
关键词 核主元分析 bagging集成学习 BP(back propagation)神经网络 软测量 熔融指数
原文传递
基于Bagging集成学习的字符识别方法 被引量:8
15
作者 刘余霞 吕虹 +1 位作者 胡涛 孙小虎 《计算机工程与应用》 CSCD 2012年第33期194-196,211,共4页
针对字符识别对象的多样性,提出了一种基于Bagging集成的字符识别模型,解决了识别模型对部分字符识别的偏好现象。采用Bagging采样策略形成不同的数据子集,在此基础上用决策树算法训练形成多个基分类器,用多数投票机制对基分类器预测结... 针对字符识别对象的多样性,提出了一种基于Bagging集成的字符识别模型,解决了识别模型对部分字符识别的偏好现象。采用Bagging采样策略形成不同的数据子集,在此基础上用决策树算法训练形成多个基分类器,用多数投票机制对基分类器预测结果集成输出。理论分析与仿真实验结果表明,所提模型相比其他分类方法具有更好的分类能力。 展开更多
关键词 bagging 字符识别 集成学习 决策树 ADABOOST
在线阅读 下载PDF
基于Bagging集成学习的电力系统暂态稳定在线评估 被引量:39
16
作者 赵冬梅 谢家康 +3 位作者 王闯 王浩翔 姜威 王怡 《电力系统保护与控制》 EI CSCD 北大核心 2022年第8期1-10,共10页
针对传统机器学习在处理暂态稳定评估时所表现出的稳定性差、精度低等问题以及离线训练的局限性,提出一种基于多模型融合Bagging集成学习方式的电力系统暂态稳定在线评估模型。首先,结合人工智能前沿理论研究,分析了暂态稳定评估中常用... 针对传统机器学习在处理暂态稳定评估时所表现出的稳定性差、精度低等问题以及离线训练的局限性,提出一种基于多模型融合Bagging集成学习方式的电力系统暂态稳定在线评估模型。首先,结合人工智能前沿理论研究,分析了暂态稳定评估中常用的7种机器学习算法的原理及实现方式,通过Bagging方法进行集成,充分发挥各个模型的优势。其次,给出Bagging集成的数学实现方法并进行了仿真实验。当原系统拓扑结构发生改变时,采用Boosting算法和迁移成分分析,分别对原电网历史数据进行样本迁移和特征迁移,完成对所提模型的在线更新。通过采用IEEE10机39节点系统和IEEE16机68节点系统进行分析,结果表明所提方法比传统机器学习模型精度更高。当数据中掺杂噪声时能够保持稳定运行,在系统拓扑改变时能够通过迁移历史数据进行准确的暂态稳定评估。 展开更多
关键词 bagging集成学习 电力系统 机器学习 暂态稳定 迁移学习 在线更新
在线阅读 下载PDF
基于MapReduce的Bagging决策树优化算法 被引量:8
17
作者 张元鸣 陈苗 +2 位作者 陆佳炜 徐俊 肖刚 《计算机工程与科学》 CSCD 北大核心 2017年第5期841-848,共8页
针对经典C4.5决策树算法存在过度拟合和伸缩性差的问题,提出了一种基于Bagging的决策树改进算法,并基于MapReduce模型对改进算法进行了并行化。首先,基于Bagging技术对C4.5算法进行了改进,通过有放回采样得到多个与初始训练集大小相等... 针对经典C4.5决策树算法存在过度拟合和伸缩性差的问题,提出了一种基于Bagging的决策树改进算法,并基于MapReduce模型对改进算法进行了并行化。首先,基于Bagging技术对C4.5算法进行了改进,通过有放回采样得到多个与初始训练集大小相等的新训练集,并在每个训练集上进行训练,得到多个分类器,再根据多数投票规则集成训练结果得到最终的分类器;然后,基于MapReduce模型对改进算法进行了并行化,能够并行化处理训练集、并行选择最佳分割属性和最佳分割点,以及并行生成子节点,实现了基于MapReduce Job工作流的并行决策树改进算法,提高了对大数据集的分析能力。实验结果表明,并行Bagging决策树改进算法具有较高的准确度与敏感度,以及较好的伸缩性和加速比。 展开更多
关键词 决策树 bagging MAPREDUCE模型 大数据分析 准确性
在线阅读 下载PDF
一种基于特征选择的SVM Bagging集成方法 被引量:9
18
作者 亓慧 王文剑 郭虎升 《小型微型计算机系统》 CSCD 北大核心 2014年第11期2533-2537,共5页
针对传统支持向量机(Support Vector Machine,SVM)集成学习(Ensemble Learning,EL)方法不能够解决高维复杂数据且子学习器差异性小集成效果不明显的问题,提出一种基于多种特征选择方法进行Bagging集成的支持向量机学习(Support Vector M... 针对传统支持向量机(Support Vector Machine,SVM)集成学习(Ensemble Learning,EL)方法不能够解决高维复杂数据且子学习器差异性小集成效果不明显的问题,提出一种基于多种特征选择方法进行Bagging集成的支持向量机学习(Support Vector M achine Based on M ultiple Feature Selection Bagging,M FSB_SVM)方法.该方法首先采用不同的特征选择方法构建子学习器,以增加不同子学习器间的差异性,并直接从训练数据中对样本特征的重要性进行评估,而无需学习算法的反馈.实验表明,本文提出的MFSB_SVM方法既可以有效解决高维数据问题,也可避免传统SVM集成方法效果不明显的缺点,从而进一步提高学习模型的泛化性能. 展开更多
关键词 支持向量机 集成学习 特征选择 bagging方法
在线阅读 下载PDF
基于Bagging支持向量机集成的入侵检测研究 被引量:7
19
作者 谷雨 郑锦辉 +1 位作者 戴明伟 何磊 《微电子学与计算机》 CSCD 北大核心 2005年第5期17-19,共3页
对大数据集来说,支持向量机的时空耗费非常大,本文采用bagging技术对支持向量机进行集成。首先用bootstrap技术对训练样本集进行可重复采样,使所得到的新子样本集有较大差异,然后用多个支持向量机对各子样本集进行学习,并将学习后的结... 对大数据集来说,支持向量机的时空耗费非常大,本文采用bagging技术对支持向量机进行集成。首先用bootstrap技术对训练样本集进行可重复采样,使所得到的新子样本集有较大差异,然后用多个支持向量机对各子样本集进行学习,并将学习后的结果用多数投票法集成最终的结论。实验表明,支持向量机集成对入侵检测数据有比单个支持向量机更好的分类性能。 展开更多
关键词 入侵检测 支持向量机 集成 bagging
在线阅读 下载PDF
Bagging中文文本分类器的改进方法研究 被引量:8
20
作者 张翔 周明全 耿国华 《小型微型计算机系统》 CSCD 北大核心 2010年第2期281-284,共4页
在文本分类研究中,集成学习是一种提高分类器性能的有效方法.Bagging算法是目前流行的一种集成学习算法.针对Bagging算法弱分类器具有相同权重问题,提出一种改进的Bagging算法.该方法通过对弱分类器分类结果进行可信度计算得到投票权重... 在文本分类研究中,集成学习是一种提高分类器性能的有效方法.Bagging算法是目前流行的一种集成学习算法.针对Bagging算法弱分类器具有相同权重问题,提出一种改进的Bagging算法.该方法通过对弱分类器分类结果进行可信度计算得到投票权重,应用于Attribute Bagging算法设计了一个中文文本自动分类器.采用kNN作为弱分类器基本模型对Sogou实验室提供的新闻集进行分类.实验表明该算法比Attribute Bagging有更好的分类精度. 展开更多
关键词 中文文本分类 可信度 ATTRIBUTE bagging
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部