Photosynthetic bacteria(PSB)has shown significant potential as a drug or drug delivery system owing to their photothermal capabilities and antioxidant properties.Nevertheless,the actualization of their potential is im...Photosynthetic bacteria(PSB)has shown significant potential as a drug or drug delivery system owing to their photothermal capabilities and antioxidant properties.Nevertheless,the actualization of their potential is impeded by inherent constraints,including their considerable size,heightened immunogenicity and compromised biosafety.Conquering these obstacles and pursuing more effective solutions remains a top priority.Similar to extracellular vesicles,bacterial outer membrane vesicles(OMVs)have demonstrated a great potential in biomedical applications.OMVs from PSB encapsulate a rich array of bioactive constituents,including proteins,nucleic acids,and lipids inherited from their parent cells.Consequently,they emerge as a promising and practical alternative.Unfortunately,OMVs have suffered from low yield and inconsistent particle sizes.In response,bacteria-derived nanovesicles(BNVs),created through controlled extrusion,adeptly overcome the challenges associated with OMVs.However,the differences,both in composition and subsequent biological effects,between OMVs and BNVs remain enigmatic.In a groundbreaking endeavor,our study meticulously cultivates PSB-derived OMVs and BNVs,dissecting their nuances.Despite minimal differences in morphology and size between PSB-derived OMVs and BNVs,the latter contains a higher concentration of active ingredients and metabolites.Particularly noteworthy is the elevated levels of lysophosphatidylcholine(LPC)found in BNVs,known for its ability to enhance cell proliferation and initiate downstream signaling pathways that promote angiogenesis and epithelialization.Importantly,our results indicate that BNVs can accelerate wound closure more effectively by orchestrating a harmonious balance of cell proliferation and migration within NIH-3T3 cells,while also activating the EGFR/AKT/PI3K pathway.In contrast,OMVs have a pronounced aptitude in anti-cancer efforts,driving macrophages toward the M1 phenotype and promoting the release of inflammatory cytokines.Thus,our findings not only provide a promising methodological framework but also establish a definitive criterion for discerning the optimal application of OMVs and BNVs in addressing a wide range of medical conditions.展开更多
Glucagon-like peptide-1(GLP-1),a signal peptide hormone produced by enteroendocrine L cells from the distal small intestine and colon,is a crucial regulator of glycemic control,gastric emptying,satiety,and body weight...Glucagon-like peptide-1(GLP-1),a signal peptide hormone produced by enteroendocrine L cells from the distal small intestine and colon,is a crucial regulator of glycemic control,gastric emptying,satiety,and body weight.Recent advancements in understanding the dietary modulation of GLP-1 through enteroendocrine L-cells have highlighted the potential of various nutrients in enhancing its endogenous secretion.This review summarizes the current knowledge on food-derived molecules,including macronutrients,polyphenols,other chemicals,and bacterial products,that can modulate GLP-1 production.It explores the efficacy and impact of various treatments and the involved signaling pathways,aiming to contribute to developing innovative strategies for enhancing endogenous GLP-1 release.展开更多
基金supported by the National Natural Science Foundation of China(32322045,32271420,31971304,and 21977024)The Beijing-Tianjin-Hebei Basic Research Cooperation Project(19JCZDJC64100)+5 种基金Cross-Disciplinary Project of Hebei University(DXK201916)One Hundred Talent Project of Hebei Province(E2018100002)National High-End Foreign Expert Recruitment Plan(G2022003007L)Science Fund for Creative Research Groups of Nature Science Foundation of Hebei Province(B2021201038)Natural Science Foundation of Hebei Province(B2023201108)Hebei Province Higher Education Science and Technology Research Project(JZX2023001).
文摘Photosynthetic bacteria(PSB)has shown significant potential as a drug or drug delivery system owing to their photothermal capabilities and antioxidant properties.Nevertheless,the actualization of their potential is impeded by inherent constraints,including their considerable size,heightened immunogenicity and compromised biosafety.Conquering these obstacles and pursuing more effective solutions remains a top priority.Similar to extracellular vesicles,bacterial outer membrane vesicles(OMVs)have demonstrated a great potential in biomedical applications.OMVs from PSB encapsulate a rich array of bioactive constituents,including proteins,nucleic acids,and lipids inherited from their parent cells.Consequently,they emerge as a promising and practical alternative.Unfortunately,OMVs have suffered from low yield and inconsistent particle sizes.In response,bacteria-derived nanovesicles(BNVs),created through controlled extrusion,adeptly overcome the challenges associated with OMVs.However,the differences,both in composition and subsequent biological effects,between OMVs and BNVs remain enigmatic.In a groundbreaking endeavor,our study meticulously cultivates PSB-derived OMVs and BNVs,dissecting their nuances.Despite minimal differences in morphology and size between PSB-derived OMVs and BNVs,the latter contains a higher concentration of active ingredients and metabolites.Particularly noteworthy is the elevated levels of lysophosphatidylcholine(LPC)found in BNVs,known for its ability to enhance cell proliferation and initiate downstream signaling pathways that promote angiogenesis and epithelialization.Importantly,our results indicate that BNVs can accelerate wound closure more effectively by orchestrating a harmonious balance of cell proliferation and migration within NIH-3T3 cells,while also activating the EGFR/AKT/PI3K pathway.In contrast,OMVs have a pronounced aptitude in anti-cancer efforts,driving macrophages toward the M1 phenotype and promoting the release of inflammatory cytokines.Thus,our findings not only provide a promising methodological framework but also establish a definitive criterion for discerning the optimal application of OMVs and BNVs in addressing a wide range of medical conditions.
基金This work was supported in part by grants from National Key Research&Development Program of China(No.2022YFC3602102)Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(No.2021-1-I2M-050)+1 种基金National Natural Science Foundation of China(No.82170856)China Postdoctoral Science Foundation(No.2022M710456).
文摘Glucagon-like peptide-1(GLP-1),a signal peptide hormone produced by enteroendocrine L cells from the distal small intestine and colon,is a crucial regulator of glycemic control,gastric emptying,satiety,and body weight.Recent advancements in understanding the dietary modulation of GLP-1 through enteroendocrine L-cells have highlighted the potential of various nutrients in enhancing its endogenous secretion.This review summarizes the current knowledge on food-derived molecules,including macronutrients,polyphenols,other chemicals,and bacterial products,that can modulate GLP-1 production.It explores the efficacy and impact of various treatments and the involved signaling pathways,aiming to contribute to developing innovative strategies for enhancing endogenous GLP-1 release.