期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR
1
作者 Zhou-Rui Tang Kai Li +4 位作者 Yu-Xun Zhou Zhen-Xian Xiao Jun-Hua Xiao Rui Huang Guo-Hao Gu 《World Journal of Gastroenterology》 SCIE CAS CSCD 2012年第3期268-274,共7页
AIM: To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. METH... AIM: To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. METHODS: Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium , Lactobacillus ) and three conditionally pathogenic bacteria (Enterococcus , Enterobacterium and Eubacterium ) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio ofthe fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested. RESULTS: cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex. CONCLUSION: The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well. 展开更多
关键词 16s rDNA Comparative quantification Com- parative polymerase chain reaction Intestinal bacteria Ligase chain reaction Ligase detection reaction
在线阅读 下载PDF
Microbial Properties of a Ferric Lixisol as Affected by Long Term Crop Management and Fertilization Regimes in Burkina Faso, West Africa
2
作者 Noufou Ouandaogo Mathias Bouinzemwendé Pouya +6 位作者 Dohan Mariam Soma Zacharia Gnankambary Delwendé Innocent Kiba Badiori Ouattara François Lompo Hassan Bismark Nacro Papaoba Michel Sedogo 《Open Journal of Soil Science》 2021年第4期256-270,共15页
We used an ongoing long-term field trial established since 1960 in Burkina Faso, to study the microbial properties of a Ferric Lixisol under various crop management and fertilization regimes. Microbial respiration rat... We used an ongoing long-term field trial established since 1960 in Burkina Faso, to study the microbial properties of a Ferric Lixisol under various crop management and fertilization regimes. Microbial respiration rate, microbial biomass carbon (MBC) and soil bacteria’s number were assessed in soil samples taken at 0<span style="font-family:;" "=""> </span><span style="font-family:;" "="">-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "="">20 cm depth. The crop management were continuous cropping of sorghum (<i>Sorghum bicolor L</i>.) (S/S) and rotation between sorghum and cowpea (<i>Vigna unguiculata L</i>.) (S/C), while the fertilization regimes were: 1) Control (te);2) Low rate of mineral fertilizer (fm);3) Low rate of mineral fertilizer + sorghum straw restitution (fmr);4) Low rate of mineral fertilizer + low rate of manure (fmo);5) High rate of mineral fertilizer (FM);and vii) High rate of mineral fertilizer + high rate of manure (FMO). The manure is applied every second year. The results indicate that sorghum/cowpea rotation significantly increase MBC and bacteria number as compared to continuous sorghum cropping. MBC ranged from 335.5 to 54.85 μg C g</span><span style="font-family:;" "=""><sup><span style="white-space:nowrap;">&minus;</span><span>1</span></sup><span> soil with S/S and from 457.5 to 86.6 μg C g</span><sup><span style="white-space:nowrap;">&minus;</span><span>1</span></sup><span> soil with S/C. Application of high level of manure and mineral fertilizer increase microbial respiration rate and MBC. The highest MBC was observed with FMO and the lowest with the control. In general, the metabolic quotient (qCO<sub>2</sub>) was negatively impacted by the fertilization and cowpea rotation. For S/S rotation, qCO<sub>2</sub> of the control was 1.5 to 2 times that of the treatments with low mineral fertilizer (fmr, fmo and fm) and 3 times that of the high rate of fertilization (FM and FMO). With S/C rotation, qCO<sub>2</sub> of the control was 2 times of that fmr, FM and FMO and 0.8 times that of fmo and fm. Soil bacteria in the fmr were 63.6 and 12.4 times the control in the S/S and S/C rotations, respectively. In sum, combined application of manure and mineral fertilizer with crop rotation is the best management practices to improve in sustainable way microbial activities in tropical soil.</span></span> 展开更多
关键词 Microbial Respiration bacteria quantification COMPOST Crop Rotation SORGHUM COWPEA
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部