期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
部分线性变系数模型Backfitting估计的渐近性质 被引量:3
1
作者 魏传华 吴喜之 《高校应用数学学报(A辑)》 CSCD 北大核心 2008年第2期227-234,共8页
作为部分线性模型与变系数模型的推广,部分线性变系数模型是一类应用广泛的数据分析模型.利用Backfitting方法拟合这类特殊的可加模型,可得到模型中常值系数估计量的精确解析表达式,该估计量被证明是n^(1/2)相合的.最后通过数值模拟考... 作为部分线性模型与变系数模型的推广,部分线性变系数模型是一类应用广泛的数据分析模型.利用Backfitting方法拟合这类特殊的可加模型,可得到模型中常值系数估计量的精确解析表达式,该估计量被证明是n^(1/2)相合的.最后通过数值模拟考察了所提估计方法的有效性. 展开更多
关键词 部分线性变系数模型 backfitting估计 光滑不足 渐近正态性
在线阅读 下载PDF
部分线性变系数模型的Backfitting约束估计 被引量:1
2
作者 安佰玲 魏传华 《统计与决策》 CSSCI 北大核心 2013年第9期80-82,共3页
作为部分线性模型与变系数模型的推广,部分线性变系数模型是一类应用广泛的半参数模型。文章主要研究该模型线性部分存在约束条件下的估计和检验问题,首先基于backfitting方法给出了常数系数以及变系数部分的约束估计,其次构造了检验统... 作为部分线性模型与变系数模型的推广,部分线性变系数模型是一类应用广泛的半参数模型。文章主要研究该模型线性部分存在约束条件下的估计和检验问题,首先基于backfitting方法给出了常数系数以及变系数部分的约束估计,其次构造了检验统计量用于检验约束条件。 展开更多
关键词 部分线性变系数模型 backfitting估计 线性约束 F分布逼近法
在线阅读 下载PDF
部分线性可加模型基于backfitting方法的岭估计 被引量:1
3
作者 蓝文英 《中央民族大学学报(自然科学版)》 2013年第S1期68-71,共4页
作为部分线性模型和可加模型的推广,部分线性可加模型是一类应用广泛的半参数模型.本文主要考虑该模型在线性部分自变量存在共线性情形下的估计问题.首先我们构造了参数分量的岭估计,其次我们构造了含有约束条件时的岭估计.
关键词 部分线性可加模型 岭估计 backfitting方法
在线阅读 下载PDF
Consistency and asymptotic normality of profilekernel and backfitting estimators in semiparametric reproductive dispersion nonlinear models
4
作者 TANG NianSheng CHEN XueDong WANG XueRen 《Science China Mathematics》 SCIE 2009年第4期757-770,共14页
Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model an... Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model and semiparametric generalized linear model as its special cases. Based on the local kernel estimate of nonparametric component, profile-kernel and backfitting estimators of parameters of interest are proposed in SRDNM, and theoretical comparison of both estimators is also investigated in this paper. Under some regularity conditions, strong consistency and asymptotic normality of two estimators are proved. It is shown that the backfitting method produces a larger asymptotic variance than that for the profile-kernel method. A simulation study and a real example are used to illustrate the proposed methodologies. 展开更多
关键词 asymptotic normality backfitting method consistency profile-kernel method semiparametric reproductive dispersion nonlinear models 62G05 62G08 62G20
原文传递
参数可加模型的Liu估计 被引量:4
5
作者 王肖南 魏传华 《统计与决策》 CSSCI 北大核心 2015年第8期28-30,共3页
文章研究半参数可加模型在线性部分自变量存在多重共线性时的估计问题,分别基于Profile最小二乘方法和Backfitting方法构造了参数分量的Liu型估计。当模型参数分量附加线性约束条件时,给出了对应的约束Liu型估计。
关键词 半参数可加模型 多重共线性 Profile最小二乘方法 backfitting方法 Liu估计
在线阅读 下载PDF
因变量缺失下部分线性可加模型的估计和检验(英文)
6
作者 魏传华 郭双 《应用数学》 CSCD 北大核心 2016年第4期797-808,共12页
本文研究部分线性可加模型在因变量存在缺失情形下的统计推断问题.首先基于完整数据方法提出了参数分量的Profile最小二乘估计并证明估计量的渐近正态性.为了给出参数分量的区间估计,构造了渐近分布为卡方分布的经验似然统计量.为了检... 本文研究部分线性可加模型在因变量存在缺失情形下的统计推断问题.首先基于完整数据方法提出了参数分量的Profile最小二乘估计并证明估计量的渐近正态性.为了给出参数分量的区间估计,构造了渐近分布为卡方分布的经验似然统计量.为了检验参数分量的线性约束条件,构造了调整的广义似然比检验统计量,当原假设成立时其渐近分布为卡方分布,从而将广义似然比检验推广到了缺失数据情形.最后通过数值模拟验证所提方法的有效性. 展开更多
关键词 backfitting 置信区间 经验似然 部分线性可加模型 缺失数据
在线阅读 下载PDF
可加模型的序列相关检验
7
作者 魏传华 胡洪胜 《统计与信息论坛》 CSSCI 2012年第10期9-13,共5页
可加模型是一类应用广泛的半参数模型,为了检验模型误差是否存在有限阶数的序列相关,基于由Backfitting估计方法得到残差构造了检验统计量,并证明了该统计量的渐近零分布为正态分布或卡方分布,最后通过模拟试验验证了该检验方法的有效性。
关键词 可加模型 序列相关 backfitting估计
在线阅读 下载PDF
Testing Serial Correlation in Partially Linear Additive Models 被引量:13
8
作者 Jin YANG Chuan-hua WEI 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2019年第2期401-411,共11页
As an extension of partially linear models and additive models, partially linear additive model is useful in statistical modelling. This paper proposes an empirical likelihood based approach for testing serial correla... As an extension of partially linear models and additive models, partially linear additive model is useful in statistical modelling. This paper proposes an empirical likelihood based approach for testing serial correlation in this semiparametric model. The proposed test method can test not only zero first-order serial correlation, but also higher-order serial correlation. Under the null hypothesis of no serial correlation, the test statistic is shown to follow asymptotically a chi-square distribution. Furthermore, a simulation study is conducted to illustrate the performance of the proposed method. 展开更多
关键词 PARTIALLY LINEAR additive model backfitting Profile LEAST-SQUARES approach Empirical LIKELIHOOD SERIAL correlation
原文传递
Model averaging for semiparametric additive partial linear models 被引量:6
9
作者 Deng GuoHua Liang Hua 《Science China Mathematics》 SCIE 2010年第5期326-339,共14页
To improve the prediction accuracy of semiparametric additive partial linear models(APLM) and the coverage probability of confidence intervals of the parameters of interest,we explore a focused information criterion f... To improve the prediction accuracy of semiparametric additive partial linear models(APLM) and the coverage probability of confidence intervals of the parameters of interest,we explore a focused information criterion for model selection among ALPM after we estimate the nonparametric functions by the polynomial spline smoothing,and introduce a general model average estimator.The major advantage of the proposed procedures is that iterative backfitting implementation is avoided,which thus results in gains in computational simplicity.The resulting estimators are shown to be asymptotically normal.A simulation study and a real data analysis are presented for illustrations. 展开更多
关键词 backfitting FOCUSED information criterion POLYNOMIAL SPLINE MODEL selection MODEL uncertainty
原文传递
Subgroup Analysis for Longitudinal Data via Semiparametric Additive Mixed Effects Model 被引量:1
10
作者 BO Xiaolin ZHANG Weiping 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第5期2155-2185,共31页
This paper proposed a general framework based on semiparametric additive mixed effects model to identify subgroups on each covariate and estimate the corresponding regression functions simultaneously for longitudinal ... This paper proposed a general framework based on semiparametric additive mixed effects model to identify subgroups on each covariate and estimate the corresponding regression functions simultaneously for longitudinal data,thus it could reveal which covariate contributes to the existence of subgroups among population.A backfitting combined with k-means algorithm was developed to detect subgroup structure on each covariate and estimate each semiparametric additive component across subgroups.A Bayesian information criterion is employed to estimate the actual number of groups.The efficacy and accuracy of the proposed procedure in identifying the subgroups and estimating the regression functions are illustrated through numerical studies.In addition,the authors demonstrate the usefulness of the proposed method with applications to PBC data and Industrial Portfolio's Return data and provide meaningful partitions of the populations. 展开更多
关键词 Additive model backfitting mixed effects subgroup identification
原文传递
Efficient Quantile Estimation for Functional-Coefficient Partially Linear Regression Models
11
作者 Zhangong ZHOU Rong JIANG Weimin QIAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第5期729-740,共12页
The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear sche... The quantile estimation methods are proposed for functional-coefficient partially linear regression (FCPLR) model by combining nonparametric and functional-coefficient regression (FCR) model. The local linear scheme and the integrated method are used to obtain Focal quantile estimators of all unknown functions in the FCPLR model. These resulting estimators are asymptotically normal, but each of them has big variance. To reduce variances of these quantile estimators, the one-step backfitting technique is used to obtain the efficient quantile estimators of all unknown functions, and their asymptotic normalities are derived. Two simulated examples are carried out to illustrate the proposed estimation methodology. 展开更多
关键词 Functional-coefficient model Quantile regression Local linear method backfitting technique Asymptotic normality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部