To provide theoretical guidance for performance stability control of low-reactive mold fluxes,the effects of BaO and MgO on the structure and properties of aluminate slag with various CaO/Al_(2)0_(3)(C/A)ratios were i...To provide theoretical guidance for performance stability control of low-reactive mold fluxes,the effects of BaO and MgO on the structure and properties of aluminate slag with various CaO/Al_(2)0_(3)(C/A)ratios were investigated using the Fourier transform infrared spectrometer,Raman spectroscope,hemispherical melting point instrument,rotational viscometer and X-ray diffractometer.The results indicated that with BaO and MgO addition,the structure polymerization was first weakened and then enhanced at C/A of 1.1,and the transition contents corresponded to 8 wt.%BaO and 2 wt.%MgO,respectively,while the structure polymerization decreased continuously at C/A of 1.3.Since the viscosity change was well consistent with the structure evolution,the polymerization degree played a more prominent role in the slag viscosity than superheat degree when the melting temperature difference was within 40℃.The break temperature decreased initially and then increased with augment of BaO and MgO at C/A of 1.1,while it manifested a decrease trend with BaO addition,and it decreased obviously but then turned to increase with MgO increment at C/A of 1.3.The crystallization phase and crystallization ratio kept stable with BaO increment,while the crystallization ratio rose greatly with MgO promoting LiAlO_(2)precipitation at C/A of 1.1.The crystal types of all experimental slags were mainly Ca_(12)Al_(14)O_(33)and CaF_(2)at C/A of 1.3,and the precipitation of crystalline phase BaAl2O4 demonstrated a rising trend,while that of Ca_(12)Al_(14)O_(33)gradually declined with BaO augment.展开更多
In order to increase the utilization rate of vanadium–titanium magnetite in blast furnace smelting,the viscosity and potassium removal capacity of CaO–SiO_(2)–Al_(2)O_(3)–MgO–BaO–TiO_(2) slag(CaO/SiO_(2)=1.05,1...In order to increase the utilization rate of vanadium–titanium magnetite in blast furnace smelting,the viscosity and potassium removal capacity of CaO–SiO_(2)–Al_(2)O_(3)–MgO–BaO–TiO_(2) slag(CaO/SiO_(2)=1.05,1–5 wt.%BaO,2–20 wt.%TiO_(2))were studied for slag optimization using the cylinder method and slag–metal equilibrium technique,respectively.Also,the structural properties of the slag were characterized by Fourier transform infrared spectroscopy.The concept of“a ring structure of Ti–O–Si”was proposed to express the change in the viscosity of the blast furnace slag.The results showed that the viscosity of slag increased with the increase in BaO content while the potassium removal capacity decreased.Furthermore,an increase in TiO_(2) content from 2 to 20 wt.%resulted in a decrease in viscosity and an increase in potassium removal capacity.The Fourier transform infrared spectroscopy results showed that the charge compensation of Ba2+can form complex aluminosilicate structure and increase the viscosity of slag.Meanwhile,with the increase in TiO_(2) content,Ti4+ions replace Si4+in the silicon-oxygen tetrahedral structure,thereby reducing the degree of polymerization of the silicate network and decreasing the viscosity.展开更多
xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte ...xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte was studied with anodic current density of 1.0 A/cm2 in laboratory electrolysis.The substantial corrosion of metal Cu was observed,many pores appeared on the surface of anode and electrolytes infiltrated inside anodes during the electrolysis.The wear rates of 5Cu/(10NiO-NiFe2O4),10Cu/(10NiO-NiFe2O4),17Cu/(10NiO-NiFe2O4),1BaO-5Cu/(10NiO-NiFe2O4),1BaO-10Cu/(10NiO-NiFe2O4) and 1BaO-17Cu/(10NiO-NiFe2O4) are 2.15,6.50,8.30,4.88,4.70 and 4.48 cm/a,respectively.The addition of BaO to 10Cu/(10NiO-NiFe2O4) cermet and 17Cu/(10NiO-NiFe2O4) cermet is advantageous because BaO can effectively promote densification and thus improve corrosion resistance.But the addition of BaO to 5Cu/(10NiO-NiFe2O4) cermet is unfavorable to corrosion resistance because additive BaO at the grain boundary of anode accelerates possibly the corrosion of cermet.展开更多
基金The authors would like to deeply appreciate the fund support from the Natural Science Foundation of Anhui Provincial Education Department(KJ2021A0358)the National Natural Science Foundation of China(51804004)。
文摘To provide theoretical guidance for performance stability control of low-reactive mold fluxes,the effects of BaO and MgO on the structure and properties of aluminate slag with various CaO/Al_(2)0_(3)(C/A)ratios were investigated using the Fourier transform infrared spectrometer,Raman spectroscope,hemispherical melting point instrument,rotational viscometer and X-ray diffractometer.The results indicated that with BaO and MgO addition,the structure polymerization was first weakened and then enhanced at C/A of 1.1,and the transition contents corresponded to 8 wt.%BaO and 2 wt.%MgO,respectively,while the structure polymerization decreased continuously at C/A of 1.3.Since the viscosity change was well consistent with the structure evolution,the polymerization degree played a more prominent role in the slag viscosity than superheat degree when the melting temperature difference was within 40℃.The break temperature decreased initially and then increased with augment of BaO and MgO at C/A of 1.1,while it manifested a decrease trend with BaO addition,and it decreased obviously but then turned to increase with MgO increment at C/A of 1.3.The crystallization phase and crystallization ratio kept stable with BaO increment,while the crystallization ratio rose greatly with MgO promoting LiAlO_(2)precipitation at C/A of 1.1.The crystal types of all experimental slags were mainly Ca_(12)Al_(14)O_(33)and CaF_(2)at C/A of 1.3,and the precipitation of crystalline phase BaAl2O4 demonstrated a rising trend,while that of Ca_(12)Al_(14)O_(33)gradually declined with BaO augment.
基金financed by the National Natural Science Foundation of China(52174325)Shaanxi Province Innovation Capability Support Plan Project(2023-CX-TD-53).
文摘In order to increase the utilization rate of vanadium–titanium magnetite in blast furnace smelting,the viscosity and potassium removal capacity of CaO–SiO_(2)–Al_(2)O_(3)–MgO–BaO–TiO_(2) slag(CaO/SiO_(2)=1.05,1–5 wt.%BaO,2–20 wt.%TiO_(2))were studied for slag optimization using the cylinder method and slag–metal equilibrium technique,respectively.Also,the structural properties of the slag were characterized by Fourier transform infrared spectroscopy.The concept of“a ring structure of Ti–O–Si”was proposed to express the change in the viscosity of the blast furnace slag.The results showed that the viscosity of slag increased with the increase in BaO content while the potassium removal capacity decreased.Furthermore,an increase in TiO_(2) content from 2 to 20 wt.%resulted in a decrease in viscosity and an increase in potassium removal capacity.The Fourier transform infrared spectroscopy results showed that the charge compensation of Ba2+can form complex aluminosilicate structure and increase the viscosity of slag.Meanwhile,with the increase in TiO_(2) content,Ti4+ions replace Si4+in the silicon-oxygen tetrahedral structure,thereby reducing the degree of polymerization of the silicate network and decreasing the viscosity.
基金Project(2005CB623703)supported by the National Basic Research Program of ChinaProject(50721003)supported by the National Natural Science Foundation for Innovation Group of China+1 种基金Project(2008AA030501)supported by the National High-tech Research and Development Program of ChinaProject(201012200021)supported by the Basic Scientific Research Program of Central South University,China
文摘xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte was studied with anodic current density of 1.0 A/cm2 in laboratory electrolysis.The substantial corrosion of metal Cu was observed,many pores appeared on the surface of anode and electrolytes infiltrated inside anodes during the electrolysis.The wear rates of 5Cu/(10NiO-NiFe2O4),10Cu/(10NiO-NiFe2O4),17Cu/(10NiO-NiFe2O4),1BaO-5Cu/(10NiO-NiFe2O4),1BaO-10Cu/(10NiO-NiFe2O4) and 1BaO-17Cu/(10NiO-NiFe2O4) are 2.15,6.50,8.30,4.88,4.70 and 4.48 cm/a,respectively.The addition of BaO to 10Cu/(10NiO-NiFe2O4) cermet and 17Cu/(10NiO-NiFe2O4) cermet is advantageous because BaO can effectively promote densification and thus improve corrosion resistance.But the addition of BaO to 5Cu/(10NiO-NiFe2O4) cermet is unfavorable to corrosion resistance because additive BaO at the grain boundary of anode accelerates possibly the corrosion of cermet.