China’s endeavors to mitigate recurrent crop residue burning(CRB)and improve air quality have yielded positive results owing to recent pollution prevention policies.Nonetheless,persistent challenges remain,particular...China’s endeavors to mitigate recurrent crop residue burning(CRB)and improve air quality have yielded positive results owing to recent pollution prevention policies.Nonetheless,persistent challenges remain,particularly in the Northeast China(NEC),where low temperature complicates crop residue management.Here,we examined the effects of cropping pattern adjustment on variations of CRB patterns in NEC during 2001-2021,utilizing the Moderate-resolution Imaging Spectroradiometer(MODIS)burned area dataset,the Visible Infrared Imaging Radiometer Suite(VIIRS)active fire dataset,and the high-accuracy crop planting area maps.Our results revealed an overall upward trend of 805.96 km^(2)/yr in NEC CRB from 2001 to 2021.The corn CRB area accounted for more than 50%of the total CRB area in each CRB-intensive year(2013-2021),and the increasing corn CRB generally aligns with the growing corn cultivation fields.A seasonal shift in CRB was found around 2017,with intensive CRB activities transitioning from both autumn and spring to primarily spring,particularly in the Songnen Plain and Sanjiang Plain.The changing trend of PM2.5 concentration aligned spatially with the shift.Moreover,the CRBs in spring of 2020 and 2021 were more severe than the major burning seasons in previous years,likely due to the disruptions during COVID-19 lockdowns.In certain years,the explanatory power of spring CRB on PM2.5 concentration was comparable to that of other natural factors,such as precipitation.This study underscores the critical need for sustained and region-specific strategies to tackle the challenges posed by CRBs.展开更多
Prescribed burning is commonly used to maintain forest ecosystem functions and reduce the risk of future wildfires.Although many studies have investigated the response of microbial community to wildfires in forest eco...Prescribed burning is commonly used to maintain forest ecosystem functions and reduce the risk of future wildfires.Although many studies have investigated the response of microbial community to wildfires in forest ecosystems,the effects of prescribed burnings on soil microbial community structure are less studied.It is also unclear that how post-fire soil physiochemical properties changes affected soil microbial communities.Here,we studied the impacts of prescribed burning on soil microbiome in three typical temperate forests of northern China by collecting soil physicochemical and high-throughput sequencing for 16S rRNA and 18S rRNA was applied to analyze the diversity and community composition of soil microbes(bacteria and fungi).Compared with pre-fire condition,prescribed burning significantly decreased Chaol index and altered soil bacterial communities(P<0.05),whereas it had no significant effect on fungal diversity and community structure of the(P>0.05).Planctomycetes and Actinobacteria made the greatest contributions to the bacterial community dissimilarity between the pre-fire and post-fire conditions.The main variables influencing the post-fire soil microbial community structure are soil pH,available phosphorus,total nitrogen,and the ratio of soil total carbon to soil total nitrogen,which could account for 73.5% of the variation in the microbial community structure in these stands.Our findings demonstrated a great discrepancy in the responses of bacteria and fungi to prescribed burning.Prescribed burning altered the soil microbial structure by modifying the physicochemical properties.Our results pointed that it is essential to evaluate the impact of prescribed burnings on forest ecosystem functions.These findings provide an important baseline for assessing post-fire microbial recovery in the region and offer critical guidance for restoration efforts.展开更多
Over the past decade,biomass burning has emerged as one of the main polluting events in northern India.It is one of the major sources of brown carbon(Br C),the light-absorbing organic carbon component of PM_(2.5).Most...Over the past decade,biomass burning has emerged as one of the main polluting events in northern India.It is one of the major sources of brown carbon(Br C),the light-absorbing organic carbon component of PM_(2.5).Most studies on the impact of biomass burning in India are based on source locations or urban areas;very little is known about its effects on a regional background location.We examine the effect of biomass burning on regional air quality and co-occurring meteorological factors.Year-long PM_(2.5)levels and light absorption by carbonaceous aerosols at 880 nm and 370 nm were measured at Rohtak,a regional background location.Results showed that post-harvest biomass burning in the Punjab-Haryana region affects the regional air quality with a lead of one to two days.A comparison of dispersionnormalized concentrations showed that open-field biomass burning not only affects regional air quality in the post-monsoon season(kharif crops)but is also a dominant source of PM_(2.5)in the post-harvest summer season(rabi crop).A significant(p<0.05)difference is observed in PM_(2.5),b_(abs-880),and b_(abs-370)between biomass burning days and non-biomass burning days during the kharif and rabi harvest seasons.Regression analyses confirm that in summer,regional PM_(2.5)and light absorption by aerosols are influenced more strongly by post-harvest burning of rabi crops.However,adverse meteorology plays a more dominant role in the post-monsoon season than biomass burning.These findings underscore the need for better policy interventions to curb biomass burning and improve air quality during both harvest seasons.展开更多
Straw burning has emerged as a persistent and multifaceted challenge within global agricultural systems,particularly across Asia,Africa,and Latin America.This review reframes straw burning not as an isolated behaviora...Straw burning has emerged as a persistent and multifaceted challenge within global agricultural systems,particularly across Asia,Africa,and Latin America.This review reframes straw burning not as an isolated behavioral issue,but as the outcome of interlinked structural,technological,and socio-cultural constraints embedded in modern agricultural transitions.Drawing on a synthesis of recent empirical studies,we identify four conceptual turning points that reshape the understanding of straw burning:the structural consequences of mechanization,the trade-offs between high-and low-tech solutions,the cultural legitimacy of burning practices,and the need for systems-based,climate-aligned management paradigms.The analysis reveals that interventions focusing solely on technical innovation often overlook the deeper institutional and cultural factors that sustain burning as a rational choice under constrained conditions.We advocate for hybrid,place-based strategies that combine accessible agronomic practices with long-term investments in infrastructure,policy alignment,and community engagement.Moving beyond fragmented solutions and adopting an integrated systems lens enables this study to contribute a forward-looking framework for sustainable straw management that is environmentally just,socially legitimate,and economically viable.展开更多
Biomass burning(BB)emits carbonaceous aerosols that significantly influence air quality in Southwest China during spring.To further understand the characteristics of spring BB and its original contribution to organic ...Biomass burning(BB)emits carbonaceous aerosols that significantly influence air quality in Southwest China during spring.To further understand the characteristics of spring BB and its original contribution to organic carbon(OC),daily fine particulate matter(PM_(2.5))samples were collected from March to May 2022 in Pu'er,Southwest China.The concentrations of OC,elemental carbon(EC),levoglucosan(Lev),and potassium from BB(K+BB)during the study period ranged from 5.3 to 31.2μg/m^(3),0.86-13.1μg/m^(3),0.06-0.82μg/m^(3),and 0.05-2.88μg/m^(3),respectively.To eliminate the effects of Lev degradation,this study uses the Aging of Air Mass(AAM)index to correct the atmospheric concentration of Lev and combines Bayesian mixture modeling with a molecular tracer method to assess the original contribution of BB to OC.The results indicated that the AAM index was 0.18±0.05,indicating that the degradation of Lev reached 82%.When considering the degradation of levoglucosan in the atmosphere,the primary source of BB aerosols was crop-straw combustion(71.1%),followed by the combustion of certain hardwoods and softwoods(24.9%)and grasses(4.0%).The original contribution of BB to OC was 62.4%,which was much greater than the contribution when levoglucosan degradation(23.7%)was ignored.The air mass inverse trajectories and Moderate Resolution Imaging Spectroradiometer(MODIS)fire hotspots indicated that the BB plume from Southeast Asia during spring could influence PM_(2.5)long-range transport in remote locations,and the contribution could reach 82%in Southwest China.展开更多
Accurate characterization of three-dimensional burning crack propagation remains pivotal yet challenging for energetic material safety,as conventional diagnostics and models inadequately resolve coupled crack-pressure...Accurate characterization of three-dimensional burning crack propagation remains pivotal yet challenging for energetic material safety,as conventional diagnostics and models inadequately resolve coupled crack-pressure dynamics in confined explosives.This study combines a novel spherical confinement system(with/without sapphire windows)with synchronized high-speed imaging and 3D reconstruction to overcome optical limitations in opaque explosives.Experimental analysis of centrally ignited HMX-based PBX-1 reveals:(1)burning cracks propagate radially with equatorial acceleration and polar deceleration,(2)systematic formation of 3–4 dominant crack branches across geometries,and(3)pressure evolution exhibiting gradual accumulation(subsurface cracking)followed by exponential growth(surface burn-through),with decay governed by cavity expansion.Building on Hill's framework,we develop a model incorporating cavity volume and fracture toughness criteria,validated against PBX explosive(95%HMX-based)experiments.The model demonstrates improved prediction of pressure trends compared to prior approaches,particularly in resolving laminar-phase accumulation and crackinduced surge transitions.Results establish structural cavity volume as a critical modulator of measured pressure and reveal direction-dependent crack kinematics as fundamental features of constrained combustion.This work provides experimentally validated insights into mechanisms of reaction pressure development and burning cracks pathways during constrained PBX explosive combustion.展开更多
We present a theoretical study of four-wave mixing(FWM)in a degenerate two-level atomic system subject to a magnetic field whose Zeeman sublevels constitute a tripod-type atomic system,which is driven by a linearly po...We present a theoretical study of four-wave mixing(FWM)in a degenerate two-level atomic system subject to a magnetic field whose Zeeman sublevels constitute a tripod-type atomic system,which is driven by a linearly polarized field,and coupled and probed by two sets of left and right circularly polarized fields.The optical effects of coherent hole burning(CHB)and electromagnetically induced transparency(EIT)are involved in the coherent system,among which the CHB has much larger response for the FWM than the EITs.Three situations of CHB are involved,and they are the solitary CHB,overlapped CHBs,and an overlap between CHB and EIT.The overlapped CHBs have the greatest magnitude of FWM signal among the three situations.Whereas,for the overlapped CHB and EIT,it has the smallest FWM magnitude,which is no more than one tenth of the former.While for the single CHB,the FWM magnitude is half of that of the overlapped CHBs.It is noted that,in the overlap between CHB and EIT,dual EIAs can be obtained,whose FWM signal also has an enhancement in comparison to no EIA.展开更多
Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,...Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.展开更多
This study investigates the end-burning hybrid rocket motors with polyethylene fuel by the numerical simulation and experiment.Based on computational fluid dynamics,a numerical model is developed.The model is validate...This study investigates the end-burning hybrid rocket motors with polyethylene fuel by the numerical simulation and experiment.Based on computational fluid dynamics,a numerical model is developed.The model is validated by two firing tests in this hybrid rocket motor,which uses oxygen and polyethylene as propellants.The results show that the numerical and experimental data are in good agreement,and the error of the chamber pressure is less than 2.63%.Based on the simulation mode,the blowoff limit of the end-burning hybrid rocket motors is investigated.When the nozzle throat diameter and the inner diameter of grain are large,it is more difficult for the hybrid rocket motor to achieve end-burning mode,i.e.,the flame spreading is prevented in the narrow duct.The main reason is that when the nozzle throat and the grain port are large,chamber pressure and oxidizer flow velocity are low.Therefore,the friction velocity considering the pressure and flow velocity is proposed.The critical friction velocity is about 4.054–4.890 m/s in the hybrid rocket motors.When the friction velocity exceeds the critical friction velocity,the combustion mode in hybrid rocket motors changes from the flame spreading mode to the end-burning mode.Moreover,the regression rate formula is obtained by fitting,which shows that the regression rate has a good correlation with combustion chamber pressure.The critical friction velocity and regression rate formula can provide an important reference for end-burning hybrid rocket motors.展开更多
Biomass burning has been known as one of main sources of Brown Carbon(BrC)in atmosphere.In this study,by controlling the combustion temperature at 250℃,350℃,and 450℃,the methanol soluble organic carbon(MSOC)and met...Biomass burning has been known as one of main sources of Brown Carbon(BrC)in atmosphere.In this study,by controlling the combustion temperature at 250℃,350℃,and 450℃,the methanol soluble organic carbon(MSOC)and methanol insoluble carbon(MISC)from pine wood burning was collected by impinger.UV–Vis,excitation emission matrix(EEM),TEM and FTIR spectra were applied to investigate the properties of BrC collected.For MSOC at 250℃ and 350℃,all the spectral profiles of UV–Vis absorption and excitation emission matrix are almost the same,while the EEM of MSOC at 450℃ are different from that of the other two.For MISC fuorescence was observed only in the case of 450℃.In the FTIR spectra,with the temperature increasing the peaks associated to the oxygen-contained functions was weakened,indicating the formation of the fuorophores with larger conjugated system,especially aromatic hydrocarbons.Our results show that biomass combustion at low temperature produces more oxygen-riched BrC,which possesses relatively lower light absorption,while at high temperature produces more aromatics hydrocarbons with relatively strong light absorption.The results of this work are helpful to trace the source of brown carbon and optimize biomass energy utilization.展开更多
Biomass burning(BB)is a very important emission source that significantly adversely impacts regional air quality.BB produces a large number of primary organic aerosol(POA)and black carbon(BC).Besides,BB also provides ...Biomass burning(BB)is a very important emission source that significantly adversely impacts regional air quality.BB produces a large number of primary organic aerosol(POA)and black carbon(BC).Besides,BB also provides many precursors for secondary organic aerosol(SOA)generation.In this work,the ratio of levoglucosan(LG)to organic carbon(OC)and the fire hotspots map was used to identify the open biomass burning(OBB)events,which occurred in two representative episodes,October 13 to November 30,2020,and April1 to April 30,2021.The ratio of organic aerosol(OA)to reconstructed PM_(2.5)concentration(PM_(2.5)^(*))increased with the increase of LG/OC.When LG/OC ratio is higher than 0.03,the highest OA/PM_(2.5)^(*)ratio can reach 80%,which means the contribution of OBB to OA is crucial.According to the ratio of LG to K^(+),LG to mannosan(MN)and the regional characteristics of Longfengshan,it can be determined that the crop residuals are the main fuel.The occurrence of OBB coincides with farmers’preferred choices,i.e.,burning biomass in“bright weather”.The“bright weather”refers to the meteorological conditions with high temperature,low humidity,and without rain.Meteorological factors indirectly affect regional biomass combustion pollution by influencing farmers’active choices.展开更多
In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The revers...In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.展开更多
Objective:To describe the clinical fea-tures of delayed post-hypoxic leukoencephalopathy after smoke inhalation from dry burning.Methods:We col-lected the clinical history and examination data of a pa-tient who presen...Objective:To describe the clinical fea-tures of delayed post-hypoxic leukoencephalopathy after smoke inhalation from dry burning.Methods:We col-lected the clinical history and examination data of a pa-tient who presented with delayed post-hypoxic leukoen-cephalopathy due to smoke poisoning.Results:Patients exposed to heavy smoke from dry burning carbonization can develop delayed post-hypoxic leukoencephalopathy.Conclusion:Delayed post-hypoxic leukoencephalopa-thy after smoke poisoning during cooking is rare.Fam-ily should bring patients to a hospital as soon as possi-ble when observing abnormal neurologic symptoms after smoke inhalation to prevent irreversible damage to the brain.展开更多
Objective: To explore the clinical efficacy of the Jing ethnic group’s self-proposed formula combined with burning mugwort on patients after cholecystectomy for gallstones. Methods: Sixty-four patients with gallstone...Objective: To explore the clinical efficacy of the Jing ethnic group’s self-proposed formula combined with burning mugwort on patients after cholecystectomy for gallstones. Methods: Sixty-four patients with gallstones who received inpatient treatment at the Hepatobiliary Surgery Department of Fangchenggang Traditional Chinese Medicine Hospital from November 2022 to November 2023 were selected and randomly divided into a control group and an observation group. The treatment group was treated with the Jing ethnic group’s self-proposed formula combined with burning mugwort, while the control group was treated with ursodeoxycholic acid tablets. The liver function indicators, therapeutic effect, safety evaluation, and quality of life of the two groups were compared. Results: After treatment, compared with the control group, the ALT, AST, and TBIL levels of the treatment group changed, but the differences were not statistically significant (P > 0.05). Within-group comparisons showed that the ALT, AST, and TBIL levels of the observation group significantly decreased after treatment, with statistically significant differences (P 0.05). After treatment, compared with the control group, the scores for psychological, physiological, social-cultural, and environmental aspects of the treatment group increased significantly, with statistically significant differences (P Conclusion: The Jing ethnic group’s self-proposed formula combined with burning mugwort can improve the therapeutic effect and quality of life of patients after cholecystectomy for gallstones without causing adverse reactions.展开更多
Based on field survey and measurement, and the simulated field burning test by indoor burning bed, a multiple linear regression model was established with factors of fuel load(x1), temperature(x2), fuel moisture c...Based on field survey and measurement, and the simulated field burning test by indoor burning bed, a multiple linear regression model was established with factors of fuel load(x1), temperature(x2), fuel moisture content(x3), wind velocity(x4), aspect(xs), slope(x6), forest height(x7), propagation velocity(x8), fire line intensity(xg) and prescribed burning width of fire isolated belt(y). The results showed that the multivari- ate linear model was y=-12.371 +4.182x1 +0.435x2 +0.013x3+0.083x4+0.017x5+0.916x6+ 0.540x7, and the influences of the factors on the prescribed burning width of fire isolated belt were in the order of x6, x7, x1, x4, x3, x2, x5. This model make it easier to establish fire isolated belt by using fuel characteristics, topographic factors, meteorological factors, and forest stand factors, providing basis for the development of prescribed burning and forest management fire.展开更多
Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were inves- tigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the neede...Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were inves- tigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 °C to 1400 °C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 °C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 °C^1100 °C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures.展开更多
Particle size and content of RDX are the two main factors that affect the burning stability of RDX-based propellants. However, these effects and the corresponding mechanisms are still controversial. In this work, we i...Particle size and content of RDX are the two main factors that affect the burning stability of RDX-based propellants. However, these effects and the corresponding mechanisms are still controversial. In this work, we investigated the physicochemical processes during burning and the corresponding mechanisms through the technologies of structure compactness analysis on the base of voidage measurement and theoretical interfacial area estimation, apparent burning rate measurement using closed vessel(CV)and extinguished burning surface characterization relying on interrupted closed vessel(ICV) and scanning electron microscope(SEM). The results indicate that the voidage increased with the increase of RDX content and particle size due to the increasing interfacial area and increasing interface gap size,respectively. The apparent burning rate increased with the increase of RDX particle size because of the decreasing RDX specific surface area on the burning surface, which could decrease the heat absorbing rates of the melting and evaporation processes of RDX in the condensed phase. Similarly, the apparent burning rate decreased with the increase of RDX content at pressures lower than around 55 MPa due to the increasing RDX specific surface area. Whereas, an opposite trend could be observed at pressures higher than around 55 MPa, which was attributed to the increasing heat feedback from the gas phase as the result of the increasing propellant energy. For propellants containing very coarse RDX particles, such as 97.8 and 199.4 μm average size, the apparent burning rate increased stably with a flat extinguished surface at pressures lower than around 30 MPa, while increased sharply above around 30 MPa with the extinguished surface becoming more and more rugged as the pressure increased. In addition, the turning degree of u-p curve increased with the increase of coarse RDX content and particle size, and could be reduced by improving the structure compactness.展开更多
Open biomass burning(OBB)has a significant impact on the heavy haze pollution in Northeast China(NEC)in recent years,which requires the investigation of the spatiotemporal variations of OBB with different vegetation t...Open biomass burning(OBB)has a significant impact on the heavy haze pollution in Northeast China(NEC)in recent years,which requires the investigation of the spatiotemporal variations of OBB with different vegetation types to better monitor and control OBB in NEC.The MODIS C6 fire and land cover products,together with the emissions inventory from the Global Fire Assimilation System,were used in this study.The changes in the total number of MODIS fire points in NEC from 2003 to 2017 demonstrated a fluctuating but generally rising trend,with a peak during 2013–2017.Most fire points concentrated in two key periods,i.e.March–April(37%)and October–November(46%).The total number of crop residue burnings in March–April was basically slightly fluctuating and increased sharply from 2013,whilst the number in October–November had a fluctuating and upward trend until 2015,when a decline appeared.The amount of OBB in March–April was higher than that in October–November during 2016–17.OBB in Heilongjiang Province comprised a major proportion of all fires,which accounted for 70.7%from 2003 to 2017;however,the proportion was only 66.2%during 2013–2017.The largest proportion of all fires was in cropland(90.8%),then forest(5.3%)and grassland(3.1%).The cumulative emissions of fine particulate matter,nitrogen oxides,and ammonia from agricultural open burning in NEC reached 78.43 Gg,24.9 Gg,and 13.7 Gg for March–April during 2013–17,respectively,which were close to those in October–November.展开更多
As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning ra...As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning rate of 5-aminotetrazole(5-ATZ) propellant has been studied by testing pressed samples under different combustor pressures and laser powers. Based on micro computed tomography(Micro CT),an advanced thickness-over-time(TOT) method to characterize the regression of the produced nonplanar burning surface is established. Because of a shell structure covering the combustion surface,the burning rate of the implemented 5-ATZ propellant is not constant during laser ablation. Resorting to functional fitting, a new law of non-constant burning including the effect of the observed unique burning surface structures is proposed. Accordingly, applicable combustion conditions of 5-ATZ based propellants have been preliminarily speculated for future research activities.展开更多
基金supported by the National Key Research and Devel-opment Program of China(Grant No.2023YFD1500200)the funding project of Northeast Geological S&T Innovation Center of China Geologi-cal Survey(Grant No.QCJJ2022-9)+3 种基金the Strategic Priority Research Pro-gram of the Chinese Academy of Sciences(Grant No.XDA28060100)the Youth Interdisciplinary Team Project of the Chinese Academy of Sciences(JCTD-2021-04)the Informatization Plan of the Chinese Academy of Sciences(Grant No.CAS-WX2021PY-0109)the National Natural Science Foundation of China(Grants No.41971078,42271375,72221002,42001378).
文摘China’s endeavors to mitigate recurrent crop residue burning(CRB)and improve air quality have yielded positive results owing to recent pollution prevention policies.Nonetheless,persistent challenges remain,particularly in the Northeast China(NEC),where low temperature complicates crop residue management.Here,we examined the effects of cropping pattern adjustment on variations of CRB patterns in NEC during 2001-2021,utilizing the Moderate-resolution Imaging Spectroradiometer(MODIS)burned area dataset,the Visible Infrared Imaging Radiometer Suite(VIIRS)active fire dataset,and the high-accuracy crop planting area maps.Our results revealed an overall upward trend of 805.96 km^(2)/yr in NEC CRB from 2001 to 2021.The corn CRB area accounted for more than 50%of the total CRB area in each CRB-intensive year(2013-2021),and the increasing corn CRB generally aligns with the growing corn cultivation fields.A seasonal shift in CRB was found around 2017,with intensive CRB activities transitioning from both autumn and spring to primarily spring,particularly in the Songnen Plain and Sanjiang Plain.The changing trend of PM2.5 concentration aligned spatially with the shift.Moreover,the CRBs in spring of 2020 and 2021 were more severe than the major burning seasons in previous years,likely due to the disruptions during COVID-19 lockdowns.In certain years,the explanatory power of spring CRB on PM2.5 concentration was comparable to that of other natural factors,such as precipitation.This study underscores the critical need for sustained and region-specific strategies to tackle the challenges posed by CRBs.
基金financially supported by the National Natural Science Foundation(No.32471868,No.32001324)Youth Lift Project of China Association for Science and Technology(No.YESS20210370)+1 种基金Fundamental Research Funds for the Central Universities(2572023CT01)We thank the Grassland Bureau and the National Innovation Alliance of Wildland Fire Prevention and Control Technology of China for supporting this research.
文摘Prescribed burning is commonly used to maintain forest ecosystem functions and reduce the risk of future wildfires.Although many studies have investigated the response of microbial community to wildfires in forest ecosystems,the effects of prescribed burnings on soil microbial community structure are less studied.It is also unclear that how post-fire soil physiochemical properties changes affected soil microbial communities.Here,we studied the impacts of prescribed burning on soil microbiome in three typical temperate forests of northern China by collecting soil physicochemical and high-throughput sequencing for 16S rRNA and 18S rRNA was applied to analyze the diversity and community composition of soil microbes(bacteria and fungi).Compared with pre-fire condition,prescribed burning significantly decreased Chaol index and altered soil bacterial communities(P<0.05),whereas it had no significant effect on fungal diversity and community structure of the(P>0.05).Planctomycetes and Actinobacteria made the greatest contributions to the bacterial community dissimilarity between the pre-fire and post-fire conditions.The main variables influencing the post-fire soil microbial community structure are soil pH,available phosphorus,total nitrogen,and the ratio of soil total carbon to soil total nitrogen,which could account for 73.5% of the variation in the microbial community structure in these stands.Our findings demonstrated a great discrepancy in the responses of bacteria and fungi to prescribed burning.Prescribed burning altered the soil microbial structure by modifying the physicochemical properties.Our results pointed that it is essential to evaluate the impact of prescribed burnings on forest ecosystem functions.These findings provide an important baseline for assessing post-fire microbial recovery in the region and offer critical guidance for restoration efforts.
基金supported by the Ministry of Environment,Forest and Climate Change(Mo Fand CC),Government of India,under the NCAP-COALESCE project(No.14/10/2014-CC(Vol.II))。
文摘Over the past decade,biomass burning has emerged as one of the main polluting events in northern India.It is one of the major sources of brown carbon(Br C),the light-absorbing organic carbon component of PM_(2.5).Most studies on the impact of biomass burning in India are based on source locations or urban areas;very little is known about its effects on a regional background location.We examine the effect of biomass burning on regional air quality and co-occurring meteorological factors.Year-long PM_(2.5)levels and light absorption by carbonaceous aerosols at 880 nm and 370 nm were measured at Rohtak,a regional background location.Results showed that post-harvest biomass burning in the Punjab-Haryana region affects the regional air quality with a lead of one to two days.A comparison of dispersionnormalized concentrations showed that open-field biomass burning not only affects regional air quality in the post-monsoon season(kharif crops)but is also a dominant source of PM_(2.5)in the post-harvest summer season(rabi crop).A significant(p<0.05)difference is observed in PM_(2.5),b_(abs-880),and b_(abs-370)between biomass burning days and non-biomass burning days during the kharif and rabi harvest seasons.Regression analyses confirm that in summer,regional PM_(2.5)and light absorption by aerosols are influenced more strongly by post-harvest burning of rabi crops.However,adverse meteorology plays a more dominant role in the post-monsoon season than biomass burning.These findings underscore the need for better policy interventions to curb biomass burning and improve air quality during both harvest seasons.
文摘Straw burning has emerged as a persistent and multifaceted challenge within global agricultural systems,particularly across Asia,Africa,and Latin America.This review reframes straw burning not as an isolated behavioral issue,but as the outcome of interlinked structural,technological,and socio-cultural constraints embedded in modern agricultural transitions.Drawing on a synthesis of recent empirical studies,we identify four conceptual turning points that reshape the understanding of straw burning:the structural consequences of mechanization,the trade-offs between high-and low-tech solutions,the cultural legitimacy of burning practices,and the need for systems-based,climate-aligned management paradigms.The analysis reveals that interventions focusing solely on technical innovation often overlook the deeper institutional and cultural factors that sustain burning as a rational choice under constrained conditions.We advocate for hybrid,place-based strategies that combine accessible agronomic practices with long-term investments in infrastructure,policy alignment,and community engagement.Moving beyond fragmented solutions and adopting an integrated systems lens enables this study to contribute a forward-looking framework for sustainable straw management that is environmentally just,socially legitimate,and economically viable.
基金supported by the Basic Research Key Project of Science and Technology Department of Yunnan Province(No.202401AS070116)the National Natural Science Foundation of China(No.21966016)。
文摘Biomass burning(BB)emits carbonaceous aerosols that significantly influence air quality in Southwest China during spring.To further understand the characteristics of spring BB and its original contribution to organic carbon(OC),daily fine particulate matter(PM_(2.5))samples were collected from March to May 2022 in Pu'er,Southwest China.The concentrations of OC,elemental carbon(EC),levoglucosan(Lev),and potassium from BB(K+BB)during the study period ranged from 5.3 to 31.2μg/m^(3),0.86-13.1μg/m^(3),0.06-0.82μg/m^(3),and 0.05-2.88μg/m^(3),respectively.To eliminate the effects of Lev degradation,this study uses the Aging of Air Mass(AAM)index to correct the atmospheric concentration of Lev and combines Bayesian mixture modeling with a molecular tracer method to assess the original contribution of BB to OC.The results indicated that the AAM index was 0.18±0.05,indicating that the degradation of Lev reached 82%.When considering the degradation of levoglucosan in the atmosphere,the primary source of BB aerosols was crop-straw combustion(71.1%),followed by the combustion of certain hardwoods and softwoods(24.9%)and grasses(4.0%).The original contribution of BB to OC was 62.4%,which was much greater than the contribution when levoglucosan degradation(23.7%)was ignored.The air mass inverse trajectories and Moderate Resolution Imaging Spectroradiometer(MODIS)fire hotspots indicated that the BB plume from Southeast Asia during spring could influence PM_(2.5)long-range transport in remote locations,and the contribution could reach 82%in Southwest China.
基金supported by the National Natural Science Foundation of China(Grant No.12402445)the National Defense Foundation Stabilization Support Program(Grant No.JCKYS2024212108)the National Key Laboratory of Shock Wave Physics and Detonation Physics Foundation(Grant No.2024CXPTGFJJ06404)。
文摘Accurate characterization of three-dimensional burning crack propagation remains pivotal yet challenging for energetic material safety,as conventional diagnostics and models inadequately resolve coupled crack-pressure dynamics in confined explosives.This study combines a novel spherical confinement system(with/without sapphire windows)with synchronized high-speed imaging and 3D reconstruction to overcome optical limitations in opaque explosives.Experimental analysis of centrally ignited HMX-based PBX-1 reveals:(1)burning cracks propagate radially with equatorial acceleration and polar deceleration,(2)systematic formation of 3–4 dominant crack branches across geometries,and(3)pressure evolution exhibiting gradual accumulation(subsurface cracking)followed by exponential growth(surface burn-through),with decay governed by cavity expansion.Building on Hill's framework,we develop a model incorporating cavity volume and fracture toughness criteria,validated against PBX explosive(95%HMX-based)experiments.The model demonstrates improved prediction of pressure trends compared to prior approaches,particularly in resolving laminar-phase accumulation and crackinduced surge transitions.Results establish structural cavity volume as a critical modulator of measured pressure and reveal direction-dependent crack kinematics as fundamental features of constrained combustion.This work provides experimentally validated insights into mechanisms of reaction pressure development and burning cracks pathways during constrained PBX explosive combustion.
基金supported by the Open Subject of the State Key Laboratory of Quantum Optics and Quantum Optics Devices(Grant No.KF202209).
文摘We present a theoretical study of four-wave mixing(FWM)in a degenerate two-level atomic system subject to a magnetic field whose Zeeman sublevels constitute a tripod-type atomic system,which is driven by a linearly polarized field,and coupled and probed by two sets of left and right circularly polarized fields.The optical effects of coherent hole burning(CHB)and electromagnetically induced transparency(EIT)are involved in the coherent system,among which the CHB has much larger response for the FWM than the EITs.Three situations of CHB are involved,and they are the solitary CHB,overlapped CHBs,and an overlap between CHB and EIT.The overlapped CHBs have the greatest magnitude of FWM signal among the three situations.Whereas,for the overlapped CHB and EIT,it has the smallest FWM magnitude,which is no more than one tenth of the former.While for the single CHB,the FWM magnitude is half of that of the overlapped CHBs.It is noted that,in the overlap between CHB and EIT,dual EIAs can be obtained,whose FWM signal also has an enhancement in comparison to no EIA.
基金supported by the National Natural Science Foundation of China (No.41875155)Natural Key Research and Development Program of China (No.2019YFA0607004)+1 种基金Environment and Conservation Fund/Woo Wheelock Green Fund (No.ECWW09EG04)Strategic Priority Research Program (B)of the Chinese Academy of Sciences (No.XDB05040502)。
文摘Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.
基金supported by the National Natural Science Foundation of China(No.U20B2034)the Academic Excellence Foundation of Beihang University for PhD Students,China.
文摘This study investigates the end-burning hybrid rocket motors with polyethylene fuel by the numerical simulation and experiment.Based on computational fluid dynamics,a numerical model is developed.The model is validated by two firing tests in this hybrid rocket motor,which uses oxygen and polyethylene as propellants.The results show that the numerical and experimental data are in good agreement,and the error of the chamber pressure is less than 2.63%.Based on the simulation mode,the blowoff limit of the end-burning hybrid rocket motors is investigated.When the nozzle throat diameter and the inner diameter of grain are large,it is more difficult for the hybrid rocket motor to achieve end-burning mode,i.e.,the flame spreading is prevented in the narrow duct.The main reason is that when the nozzle throat and the grain port are large,chamber pressure and oxidizer flow velocity are low.Therefore,the friction velocity considering the pressure and flow velocity is proposed.The critical friction velocity is about 4.054–4.890 m/s in the hybrid rocket motors.When the friction velocity exceeds the critical friction velocity,the combustion mode in hybrid rocket motors changes from the flame spreading mode to the end-burning mode.Moreover,the regression rate formula is obtained by fitting,which shows that the regression rate has a good correlation with combustion chamber pressure.The critical friction velocity and regression rate formula can provide an important reference for end-burning hybrid rocket motors.
基金financially supported by the Natural Science Foundation of Beijing Municipality (No.8222074)the National Natural Science Foundation of China (No.81961138011)。
文摘Biomass burning has been known as one of main sources of Brown Carbon(BrC)in atmosphere.In this study,by controlling the combustion temperature at 250℃,350℃,and 450℃,the methanol soluble organic carbon(MSOC)and methanol insoluble carbon(MISC)from pine wood burning was collected by impinger.UV–Vis,excitation emission matrix(EEM),TEM and FTIR spectra were applied to investigate the properties of BrC collected.For MSOC at 250℃ and 350℃,all the spectral profiles of UV–Vis absorption and excitation emission matrix are almost the same,while the EEM of MSOC at 450℃ are different from that of the other two.For MISC fuorescence was observed only in the case of 450℃.In the FTIR spectra,with the temperature increasing the peaks associated to the oxygen-contained functions was weakened,indicating the formation of the fuorophores with larger conjugated system,especially aromatic hydrocarbons.Our results show that biomass combustion at low temperature produces more oxygen-riched BrC,which possesses relatively lower light absorption,while at high temperature produces more aromatics hydrocarbons with relatively strong light absorption.The results of this work are helpful to trace the source of brown carbon and optimize biomass energy utilization.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.LH2020D011)the S&T Development Fund of CAMS(No.2020KJ003)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research(No.201913)。
文摘Biomass burning(BB)is a very important emission source that significantly adversely impacts regional air quality.BB produces a large number of primary organic aerosol(POA)and black carbon(BC).Besides,BB also provides many precursors for secondary organic aerosol(SOA)generation.In this work,the ratio of levoglucosan(LG)to organic carbon(OC)and the fire hotspots map was used to identify the open biomass burning(OBB)events,which occurred in two representative episodes,October 13 to November 30,2020,and April1 to April 30,2021.The ratio of organic aerosol(OA)to reconstructed PM_(2.5)concentration(PM_(2.5)^(*))increased with the increase of LG/OC.When LG/OC ratio is higher than 0.03,the highest OA/PM_(2.5)^(*)ratio can reach 80%,which means the contribution of OBB to OA is crucial.According to the ratio of LG to K^(+),LG to mannosan(MN)and the regional characteristics of Longfengshan,it can be determined that the crop residuals are the main fuel.The occurrence of OBB coincides with farmers’preferred choices,i.e.,burning biomass in“bright weather”.The“bright weather”refers to the meteorological conditions with high temperature,low humidity,and without rain.Meteorological factors indirectly affect regional biomass combustion pollution by influencing farmers’active choices.
基金supported by National Natural Science Foundation of China (Nos. 12205251, 12275236 and 12261131622)Italian Ministry for Foreign Affairs and International Cooperation Project (No. CN23GR02)+2 种基金the National Key Research and Development Program of China (Nos. 2019YFE03020003 and 2017YFE0301900)Users of Excellence program of Hefei Science Center CAS (No. 2021HSC-UE016)funded by the European Union via the Euratom Research and Training Programme (No. 101052200–EUROfusion)
文摘In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.
文摘Objective:To describe the clinical fea-tures of delayed post-hypoxic leukoencephalopathy after smoke inhalation from dry burning.Methods:We col-lected the clinical history and examination data of a pa-tient who presented with delayed post-hypoxic leukoen-cephalopathy due to smoke poisoning.Results:Patients exposed to heavy smoke from dry burning carbonization can develop delayed post-hypoxic leukoencephalopathy.Conclusion:Delayed post-hypoxic leukoencephalopa-thy after smoke poisoning during cooking is rare.Fam-ily should bring patients to a hospital as soon as possi-ble when observing abnormal neurologic symptoms after smoke inhalation to prevent irreversible damage to the brain.
文摘Objective: To explore the clinical efficacy of the Jing ethnic group’s self-proposed formula combined with burning mugwort on patients after cholecystectomy for gallstones. Methods: Sixty-four patients with gallstones who received inpatient treatment at the Hepatobiliary Surgery Department of Fangchenggang Traditional Chinese Medicine Hospital from November 2022 to November 2023 were selected and randomly divided into a control group and an observation group. The treatment group was treated with the Jing ethnic group’s self-proposed formula combined with burning mugwort, while the control group was treated with ursodeoxycholic acid tablets. The liver function indicators, therapeutic effect, safety evaluation, and quality of life of the two groups were compared. Results: After treatment, compared with the control group, the ALT, AST, and TBIL levels of the treatment group changed, but the differences were not statistically significant (P > 0.05). Within-group comparisons showed that the ALT, AST, and TBIL levels of the observation group significantly decreased after treatment, with statistically significant differences (P 0.05). After treatment, compared with the control group, the scores for psychological, physiological, social-cultural, and environmental aspects of the treatment group increased significantly, with statistically significant differences (P Conclusion: The Jing ethnic group’s self-proposed formula combined with burning mugwort can improve the therapeutic effect and quality of life of patients after cholecystectomy for gallstones without causing adverse reactions.
基金Supported by the Scientific Research Fund of the Education Bureau of Yunnan Province,China (2011C113)the Science and Technology Innovation Program for Undergraduates,Southwest Forestry University,China (1031)the "Forest Protection"Key Discipline of Yunnan Province,China (XKZ200905)~~
文摘Based on field survey and measurement, and the simulated field burning test by indoor burning bed, a multiple linear regression model was established with factors of fuel load(x1), temperature(x2), fuel moisture content(x3), wind velocity(x4), aspect(xs), slope(x6), forest height(x7), propagation velocity(x8), fire line intensity(xg) and prescribed burning width of fire isolated belt(y). The results showed that the multivari- ate linear model was y=-12.371 +4.182x1 +0.435x2 +0.013x3+0.083x4+0.017x5+0.916x6+ 0.540x7, and the influences of the factors on the prescribed burning width of fire isolated belt were in the order of x6, x7, x1, x4, x3, x2, x5. This model make it easier to establish fire isolated belt by using fuel characteristics, topographic factors, meteorological factors, and forest stand factors, providing basis for the development of prescribed burning and forest management fire.
文摘Pulverized coal reburning, ammonia injection and advanced reburning in a pilot scale drop tube furnace were inves- tigated. Premix of petroleum gas, air and NH3 were burned in a porous gas burner to generate the needed flue gas. Four kinds of pulverized coal were fed as reburning fuel at constant rate of 1g/min. The coal reburning process parameters including 15%~25% reburn heat input, temperature range from 1100 °C to 1400 °C and also the carbon in fly ash, coal fineness, reburn zone stoichiometric ratio, etc. were investigated. On the condition of 25% reburn heat input, maximum of 47% NO reduction with Yanzhou coal was obtained by pure coal reburning. Optimal temperature for reburning is about 1300 °C and fuel-rich stoichiometric ratio is essential; coal fineness can slightly enhance the reburning ability. The temperature window for ammonia injection is about 700 °C^1100 °C. CO can improve the NH3 ability at lower temperature. During advanced reburning, 72.9% NO reduction was measured. To achieve more than 70% NO reduction, Selective Non-catalytic NOx Reduction (SNCR) should need NH3/NO stoichiometric ratio larger than 5, while advanced reburning only uses common dose of ammonia as in conventional SNCR technology. Mechanism study shows the oxidization of CO can improve the decomposition of H2O, which will rich the radical pools igniting the whole reactions at lower temperatures.
基金the support of Key Laboratory of Special Energy Materials,Ministry of Education,Nanjing,210094,China.
文摘Particle size and content of RDX are the two main factors that affect the burning stability of RDX-based propellants. However, these effects and the corresponding mechanisms are still controversial. In this work, we investigated the physicochemical processes during burning and the corresponding mechanisms through the technologies of structure compactness analysis on the base of voidage measurement and theoretical interfacial area estimation, apparent burning rate measurement using closed vessel(CV)and extinguished burning surface characterization relying on interrupted closed vessel(ICV) and scanning electron microscope(SEM). The results indicate that the voidage increased with the increase of RDX content and particle size due to the increasing interfacial area and increasing interface gap size,respectively. The apparent burning rate increased with the increase of RDX particle size because of the decreasing RDX specific surface area on the burning surface, which could decrease the heat absorbing rates of the melting and evaporation processes of RDX in the condensed phase. Similarly, the apparent burning rate decreased with the increase of RDX content at pressures lower than around 55 MPa due to the increasing RDX specific surface area. Whereas, an opposite trend could be observed at pressures higher than around 55 MPa, which was attributed to the increasing heat feedback from the gas phase as the result of the increasing propellant energy. For propellants containing very coarse RDX particles, such as 97.8 and 199.4 μm average size, the apparent burning rate increased stably with a flat extinguished surface at pressures lower than around 30 MPa, while increased sharply above around 30 MPa with the extinguished surface becoming more and more rugged as the pressure increased. In addition, the turning degree of u-p curve increased with the increase of coarse RDX content and particle size, and could be reduced by improving the structure compactness.
基金partially supported by the National Natural Science Foundation of China grant number 41775162
文摘Open biomass burning(OBB)has a significant impact on the heavy haze pollution in Northeast China(NEC)in recent years,which requires the investigation of the spatiotemporal variations of OBB with different vegetation types to better monitor and control OBB in NEC.The MODIS C6 fire and land cover products,together with the emissions inventory from the Global Fire Assimilation System,were used in this study.The changes in the total number of MODIS fire points in NEC from 2003 to 2017 demonstrated a fluctuating but generally rising trend,with a peak during 2013–2017.Most fire points concentrated in two key periods,i.e.March–April(37%)and October–November(46%).The total number of crop residue burnings in March–April was basically slightly fluctuating and increased sharply from 2013,whilst the number in October–November had a fluctuating and upward trend until 2015,when a decline appeared.The amount of OBB in March–April was higher than that in October–November during 2016–17.OBB in Heilongjiang Province comprised a major proportion of all fires,which accounted for 70.7%from 2003 to 2017;however,the proportion was only 66.2%during 2013–2017.The largest proportion of all fires was in cropland(90.8%),then forest(5.3%)and grassland(3.1%).The cumulative emissions of fine particulate matter,nitrogen oxides,and ammonia from agricultural open burning in NEC reached 78.43 Gg,24.9 Gg,and 13.7 Gg for March–April during 2013–17,respectively,which were close to those in October–November.
基金supported by the Shanghai Aerospace Science & Technology Innovation Fund (grant No. SAST201363)the Fundamental Research Funds for the Central Universities (grant No. 30919012102 in part)。
文摘As an innovative propulsion technique, laser augmented chemical propulsion(LACP) seems superior to the traditional ones. However, the corresponding combustion theories have still to be ascertained for LACP. Burning rate of 5-aminotetrazole(5-ATZ) propellant has been studied by testing pressed samples under different combustor pressures and laser powers. Based on micro computed tomography(Micro CT),an advanced thickness-over-time(TOT) method to characterize the regression of the produced nonplanar burning surface is established. Because of a shell structure covering the combustion surface,the burning rate of the implemented 5-ATZ propellant is not constant during laser ablation. Resorting to functional fitting, a new law of non-constant burning including the effect of the observed unique burning surface structures is proposed. Accordingly, applicable combustion conditions of 5-ATZ based propellants have been preliminarily speculated for future research activities.