期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合BERT和自注意力机制的张量图卷积网络文本分类
被引量:
1
1
作者
史文艺
朱欣娟
《计算机系统应用》
2025年第3期152-160,共9页
TensorGCN模型是图神经网络应用在文本分类领域的SOTA模型之一.然而在处理文本语义信息方面,该模型使用的LSTM难以完全地提取短文本语义特征,且对复杂的语义处理效果不佳;同时,由于长文本中包含的语义及句法特征较多,在进行图间异构信...
TensorGCN模型是图神经网络应用在文本分类领域的SOTA模型之一.然而在处理文本语义信息方面,该模型使用的LSTM难以完全地提取短文本语义特征,且对复杂的语义处理效果不佳;同时,由于长文本中包含的语义及句法特征较多,在进行图间异构信息共享时特征共享不完全,影响文本分类的准确性.针对这两个问题,对TensorGCN模型进行改进,提出融合BERT和自注意力机制的张量图卷积网络(BTSGCN)文本分类方法.首先,使用BERT代替TensorGCN架构中的LSTM模块进行语义特征提取,通过考虑给定单词两侧的周围单词来捕获单词之间的依赖关系,更准确地提取短文本语义特征;然后,在图间传播时加入自注意力机制,帮助模型更好地捕捉不同图之间的特征,完成特征融合.在MR、R8、R52和20NG这4个数据集上的实验结果表明BTSGCN相比于其他对比方法的分类准确度更高.
展开更多
关键词
文本分类
图神经网络
btsgcn
BERT
自注意力机制
在线阅读
下载PDF
职称材料
题名
融合BERT和自注意力机制的张量图卷积网络文本分类
被引量:
1
1
作者
史文艺
朱欣娟
机构
西安工程大学计算机科学学院
出处
《计算机系统应用》
2025年第3期152-160,共9页
基金
陕西省重点研发计划(2024GX-YBXM-548)。
文摘
TensorGCN模型是图神经网络应用在文本分类领域的SOTA模型之一.然而在处理文本语义信息方面,该模型使用的LSTM难以完全地提取短文本语义特征,且对复杂的语义处理效果不佳;同时,由于长文本中包含的语义及句法特征较多,在进行图间异构信息共享时特征共享不完全,影响文本分类的准确性.针对这两个问题,对TensorGCN模型进行改进,提出融合BERT和自注意力机制的张量图卷积网络(BTSGCN)文本分类方法.首先,使用BERT代替TensorGCN架构中的LSTM模块进行语义特征提取,通过考虑给定单词两侧的周围单词来捕获单词之间的依赖关系,更准确地提取短文本语义特征;然后,在图间传播时加入自注意力机制,帮助模型更好地捕捉不同图之间的特征,完成特征融合.在MR、R8、R52和20NG这4个数据集上的实验结果表明BTSGCN相比于其他对比方法的分类准确度更高.
关键词
文本分类
图神经网络
btsgcn
BERT
自注意力机制
Keywords
text classification
graph neural network(GNN)
tensor graph convolutional network fusing BERT and the self-attention mechanism(
btsgcn
)
BERT
self-attention mechanism
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合BERT和自注意力机制的张量图卷积网络文本分类
史文艺
朱欣娟
《计算机系统应用》
2025
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部