Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage...Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage resistance to powdery mildew over consecutive years.Genetic analysis of H1-707 at the seedling stage revealed a dominant monogenic inheritance pattern,and the underlying gene was designated Pm71.By employing bulked segregant exome sequencing(BSE-Seq)and using 2000 F2:3 families,Pm71 was fine mapped to a 336-kb interval on chromosome arm 6AS by referencing to the durum cv.Svevo RefSeq 1.0.Collinearity analysis revealed high homology in the candidate interval between Svevo and six Triticum species.Among six high-confidence genes annotated within this interval,TRITD6Av1G005050 encoding a GDSL esterase/lipase was identified as a key candidate for Pm71.展开更多
Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathoge...Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding.展开更多
Grain size and weight are key components of wheat yield.Exploitation of major underlying quantitative trait loci(QTL)can improve yield potential in wheat breeding.A recombinant inbred line(RIL)population was construct...Grain size and weight are key components of wheat yield.Exploitation of major underlying quantitative trait loci(QTL)can improve yield potential in wheat breeding.A recombinant inbred line(RIL)population was constructed to detect QTL for thousand-grain weight(TGW),grain length(GL)and grain width(GW)across eight environments.Genomic regions associated with grain size and grain weight were identified on chromosomes 4A and 6A using bulked segregant exome sequencing(BSE-Seq)analysis.After constructing genetic maps,six major QTL detected in at least four individual environments and in best linear unbiased estimator(BLUE)datasets,explained 7.50%-23.45%of the phenotypic variation.Except for QGl.cib-4A,the other five QTL were co-located in two regions,namely QTgw/Gw.cib-4A and QTgw/Gw/Gl.cib-6A.Interactions of these QTL were analyzed.Unlike QTgw/Gw/Gl.cib-6A,QTgw/Gw.cib-4A and QGl.cib-4A had no effect on grain number per spike(GNS).The QTL were validated in a second cross using Kompetitive Allele Specific PCR(KASP)markers.Since QTgw/Gw.cib-4A was probably a novel locus,it and the KASP markers reported here can be used in wheat breeding.TraesCS4A03G0191200 was predicted to be potential candidate gene for QTgw/Gw.cib-4A based on the sequence differences,spatiotemporal expression patterns,gene annotation and haplotype analysis.Our findings will be useful for fine mapping and for marker-assisted selection in wheat grain yield improvement.展开更多
基金financially supported by National Natural Science Foundation of China(32301800,32301923 and 32072053)Wheat Industrial Technology System of Shandong Province(SDAIT-01-01)Key Research and Development Project of Shandong Province(2022LZG002-4,2023LZGC009-4-4).
文摘Powdery mildew negatively impacts wheat yield and quality.Emmer wheat(Triticum dicoccum),an ancestral species of common wheat,is a gene donor for wheat improvement.Cultivated emmer accession H1-707 exhibited all-stage resistance to powdery mildew over consecutive years.Genetic analysis of H1-707 at the seedling stage revealed a dominant monogenic inheritance pattern,and the underlying gene was designated Pm71.By employing bulked segregant exome sequencing(BSE-Seq)and using 2000 F2:3 families,Pm71 was fine mapped to a 336-kb interval on chromosome arm 6AS by referencing to the durum cv.Svevo RefSeq 1.0.Collinearity analysis revealed high homology in the candidate interval between Svevo and six Triticum species.Among six high-confidence genes annotated within this interval,TRITD6Av1G005050 encoding a GDSL esterase/lipase was identified as a key candidate for Pm71.
基金supported by the Major Program of National Agricultural Science and Technology of China (NK20220607)the National Natural Science Foundation of China (32272059 and31971883)the Science and Technology Department of Sichuan Province (2022ZDZX0014, 2021YFYZ0002, 2021YJ0297, and23NSFTD0045)。
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici(Pst), threatens wheat production worldwide, and resistant varieties tend to become susceptible after a period of cultivation owing to the variation of pathogen races. In this study, a new resistance gene against Pst race CYR34 was identified and predicted using the descendants of a cross between AS1676, a highly resistant Chinese landrace, and Avocet S, a susceptible cultivar. From a heterozygous plant from a F7recombinant inbred line(RIL) population lacking the Yr18 gene, a near-isogenic line(NIL) population was developed to map the resistance gene. An allstage resistance gene, YrAS1676, was identified on chromosome arm 1AL via bulked-segregant exomecapture sequencing. By analyzing a large NIL population consisting of 6537 plants, the gene was further mapped to the marker interval between KA1A_485.36 and KA1A_490.13, spanning 485.36–490.13 Mb on1AL. A total of 66 annotated genes have been reported in this region. To characterize and predict the candidate gene(s), an RNA-seq was performed using NIL-R and NIL-S seedlings 3 days after CYR34 inoculation. Compared to NIL-S plants, NIL-R plants showed stronger immune reaction and higher expression levels of genes encoding pathogenesis-associated proteins. These differences may help to explain why NIL-R plants were more resistant to Pst race CYR34 than NIL-S plants. By combining fine-mapping and transcriptome sequencing, a calcium-dependent protein kinase gene was finally predicted as the potential candidate gene of YrAS1676. This gene contained a single-nucleotide polymorphism. The candidate gene was more highly expressed in NIL-R than in NIL-S plants. In field experiments with Pst challenge,the YrAS1676 genotype showed mitigation of disease damage and yield loss without adverse effects on tested agronomic traits. These results suggest that YrAS1676 has potential use in wheat stripe rust resistance breeding.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA24030402)Sichuan Science and Technology Program.
文摘Grain size and weight are key components of wheat yield.Exploitation of major underlying quantitative trait loci(QTL)can improve yield potential in wheat breeding.A recombinant inbred line(RIL)population was constructed to detect QTL for thousand-grain weight(TGW),grain length(GL)and grain width(GW)across eight environments.Genomic regions associated with grain size and grain weight were identified on chromosomes 4A and 6A using bulked segregant exome sequencing(BSE-Seq)analysis.After constructing genetic maps,six major QTL detected in at least four individual environments and in best linear unbiased estimator(BLUE)datasets,explained 7.50%-23.45%of the phenotypic variation.Except for QGl.cib-4A,the other five QTL were co-located in two regions,namely QTgw/Gw.cib-4A and QTgw/Gw/Gl.cib-6A.Interactions of these QTL were analyzed.Unlike QTgw/Gw/Gl.cib-6A,QTgw/Gw.cib-4A and QGl.cib-4A had no effect on grain number per spike(GNS).The QTL were validated in a second cross using Kompetitive Allele Specific PCR(KASP)markers.Since QTgw/Gw.cib-4A was probably a novel locus,it and the KASP markers reported here can be used in wheat breeding.TraesCS4A03G0191200 was predicted to be potential candidate gene for QTgw/Gw.cib-4A based on the sequence differences,spatiotemporal expression patterns,gene annotation and haplotype analysis.Our findings will be useful for fine mapping and for marker-assisted selection in wheat grain yield improvement.