The Ba_(0.3)Sr_(0.6)Ca_(0.1)TiO_(3)(BSCT)powder was prepared through the solid-state reaction.And then preparing ceramic samples with quantitative doped-Bi_(2)O_(3)·3TiO_(2) and diferent doped-MgO.X-ray diffracto...The Ba_(0.3)Sr_(0.6)Ca_(0.1)TiO_(3)(BSCT)powder was prepared through the solid-state reaction.And then preparing ceramic samples with quantitative doped-Bi_(2)O_(3)·3TiO_(2) and diferent doped-MgO.X-ray diffractometer(XRD)and scanning electron microscopy(SEM)were used to investigate the phase compositions,distribution and morphology of the ceramic samples.SM-11J49 capacitance measurement instrument and CS2674A pressure tester were used to measure the dieletric properties of the samples.The results show that the compactness and the dielectric constant of the ceramics increases first and then decreases when the doped MgO content was changed from 1.5 to 4.5 wt.%.The trend of breakdown strength is characterized by M-shaped pattern with the increase of doped-MgO content.Calculation results demonstrate that when the doped-MgO content is 2.0%,the samples have the highest energy storage density.展开更多
文摘采用传统固相反应合成主晶相Ba0.56Sr0.34Ca0.1TiO3(BSCT)粉末,复合掺杂Mn CO3、Nb2O5、MgTiO3,在空气气氛下常压烧结制备BSCT基陶瓷。研究了MgTiO3的掺杂量对BSCT陶瓷材料的相组成、微观形貌、介电性能和储能密度的影响。结果表明:MgTiO3具有细化晶粒的作用;烧结体的致密度、介电常数和抗压强度随着MgTiO3的含量的增加先增大后减小;居里温度Tc随MgTiO3含量的增加向负温度方向移动,当烧结温度为1250℃,MgTiO3含量为0.69wt%,BSCT陶瓷的综合性能较好:击穿强度和储能密度达到最高值,分别为21.33 k V/mm、2.629 J/cm3。
文摘The Ba_(0.3)Sr_(0.6)Ca_(0.1)TiO_(3)(BSCT)powder was prepared through the solid-state reaction.And then preparing ceramic samples with quantitative doped-Bi_(2)O_(3)·3TiO_(2) and diferent doped-MgO.X-ray diffractometer(XRD)and scanning electron microscopy(SEM)were used to investigate the phase compositions,distribution and morphology of the ceramic samples.SM-11J49 capacitance measurement instrument and CS2674A pressure tester were used to measure the dieletric properties of the samples.The results show that the compactness and the dielectric constant of the ceramics increases first and then decreases when the doped MgO content was changed from 1.5 to 4.5 wt.%.The trend of breakdown strength is characterized by M-shaped pattern with the increase of doped-MgO content.Calculation results demonstrate that when the doped-MgO content is 2.0%,the samples have the highest energy storage density.