期刊文献+
共找到310篇文章
< 1 2 16 >
每页显示 20 50 100
Brittleness evaluation of gas-bearing coal based on statistical damage constitution model and energy evolution mechanism
1
作者 XUE Yi WANG Lin-chao +5 位作者 LIU Yong RANJITH P G CAO Zheng-zheng SHI Xu-yang GAO Feng KONG Hai-ling 《Journal of Central South University》 2025年第2期566-581,共16页
Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a ... Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a statistical damage constitutive model and energy evolution mechanisms.Initially,integrating the principle of effective stress and the Hoek-Brown criterion,a statistical damage constitutive model for gas-bearing coal is established and validated through triaxial compression tests under different gas pressures to verify its accuracy and applicability.Subsequently,employing energy evolution mechanism,two energy characteristic parameters(elastic energy proportion and dissipated energy proportion)are analyzed.Based on the damage stress thresholds,the damage evolution characteristics of gas bearing coal were explored.Finally,by integrating energy characteristic parameters with damage parameters,a novel brittleness index is proposed.The results demonstrate that the theoretical curves derived from the statistical damage constitutive model closely align with the test curves,accurately reflecting the stress−strain characteristics of gas-bearing coal and revealing the stress drop and softening characteristics of coal in the post-peak stage.The shape parameter and scale parameter represent the brittleness and macroscopic strength of the coal,respectively.As gas pressure increases from 1 to 5 MPa,the shape parameter and the scale parameter decrease by 22.18%and 60.45%,respectively,indicating a reduction in both brittleness and strength of the coal.Parameters such as maximum damage rate and peak elastic energy storage limit positively correlate with coal brittleness.The brittleness index effectively captures the brittleness characteristics and reveals a decrease in brittleness and an increase in sensitivity to plastic deformation under higher gas pressure conditions. 展开更多
关键词 gas pressure statistical damage constitutive model energy evolution mechanism brittleness evaluation gas bearing coal
在线阅读 下载PDF
Intelligent seismic AVO inversion method for brittleness index of shale oil reservoirs
2
作者 Yu-Hang Sun Hong-Li Dong +4 位作者 Gui Chen Xue-Gui Li Yang Liu Xiao-Hong Yu Jun Wu 《Petroleum Science》 2025年第2期627-640,共14页
The brittleness index(BI)is crucial for predicting engineering sweet spots and designing fracturing operations in shale oil reservoir exploration and development.Seismic amplitude variation with offset(AVO)inversion i... The brittleness index(BI)is crucial for predicting engineering sweet spots and designing fracturing operations in shale oil reservoir exploration and development.Seismic amplitude variation with offset(AVO)inversion is commonly used to obtain the BI.Traditionally,velocity,density,and other parameters are firstly inverted,and the BI is then calculated,which often leads to accumulated errors.Moreover,due to the limited of well-log data in field work areas,AVO inversion typically faces the challenge of limited information,resulting in not high accuracy of BI derived by existing AVO inversion methods.To address these issues,we first derive an AVO forward approximation equation that directly characterizes the BI in P-wave reflection coefficients.Based on this,an intelligent AVO inversion method,which combines the advantages of traditional and intelligent approaches,for directly obtaining the BI is proposed.A TransUnet model is constructed to establish the strong nonlinear mapping relationship between seismic data and the BI.By incorporating a combined objective function that is constrained by both low-frequency parameters and training samples,the challenge of limited samples is effectively addressed,and the direct inversion of the BI is stably achieved.Tests on model data and applications on field data demonstrate the feasibility,advancement,and practicality of the proposed method. 展开更多
关键词 brittleness index Shale oil reservoirs Seismic AVO inversion TransU-net model
原文传递
Inhibition of the intergranular brittleness of HR3C heat-resistant steel by strain-aging induced nano-M23C6 dispersion precipitation
3
作者 Xuehan Wang Lining Xu +4 位作者 Lang Jiao Wenyao Li Jinna Mei Yanfen Zhao Lijie Qiao 《Journal of Materials Science & Technology》 2025年第10期288-299,共12页
M23C6 chromium-rich carbides are common grain-boundary precipitations in Cr-containing steel.The presence of grain-boundary carbides often leads to intergranular brittleness and decreases mechanical properties.This st... M23C6 chromium-rich carbides are common grain-boundary precipitations in Cr-containing steel.The presence of grain-boundary carbides often leads to intergranular brittleness and decreases mechanical properties.This study proposes a deformation and aging technique to obtain a high-volume-fraction dispersion distribution of the hard nano-M23C6 phase by changing the nucleation sites from grain boundaries to deformation coherent twin boundaries produced during cold deformation.The M23C6 precipitation-strengthened austenitic stainless steel has a strength of up to 1.4 GPa but maintains favorable plasticity(>11%).This study provides a novel approach for the control of intergranular brittleness in metallic materials. 展开更多
关键词 HR3C steel M23C6 chromium-rich carbides Cold deformation Intergranular brittleness Deformation coherent twin boundary
原文传递
Significantly ameliorating room-temperature brittleness of refractory high-entropy alloys via in situ heterogeneous structure 被引量:1
4
作者 Dong Han Baijun Yang +4 位作者 Wenlong Xu Hongwang Yang Guofeng Han Xiaoming Wang Jianqiang Wang 《Journal of Materials Science & Technology》 CSCD 2024年第26期1-17,共17页
Although refractory high-entropy alloys(RHEAs)possess excellent softening resistance and thermal sta-bility at high temperatures,their practical application is often limited due to room temperature(RT)brit-tleness.In ... Although refractory high-entropy alloys(RHEAs)possess excellent softening resistance and thermal sta-bility at high temperatures,their practical application is often limited due to room temperature(RT)brit-tleness.In this work,we successfully achieved RT plasticization in a brittle(TaMoTi)_(92)Al_(8)RHEA via in situ forming heterogeneous structure(HS)with the doping of Zr.Different from the mainstream design con-cept of“soft solid solution matrices with hard intermetallic phases”proposed in the literature,the newly developed TaMoZrTiAl RHEA is featured by a hard disordered BCC phase embedded into a soft intermetal-lic B2 matrix.Such an HS leads to the remarkable strength-plasticity synergy in this alloy at RT,showing a large plasticity of>20%,associated with a high strength of>2380 MPa.It was found that solid solu-tion strengthening and heterodeformation-induced strengthening caused by dislocation pile-ups at phase boundaries are responsible for the enhancement in the yield strength,while deformation-induced strain partition and the frequent operation of dislocation cross-slip substantially improve the work hardening capacity of alloy,thus enabling the high strength and good RT plasticity.In short,the current work not only reveals the micromechanisms of the influence of heterogeneous dual-phase structure on the RT me-chanical behaviour in RHEAs but also provides a useful strategy for plasticizing brittle RHEAs. 展开更多
关键词 Refractory high-entropy alloy Heterogeneous structure Heterodeformation-induced hardening brittleness PLASTICITY B2 phase
原文传递
Quantitative characterization of the brittleness of deep shales by integrating mineral content,elastic parameters,in situ stress conditions and logging analysis
5
作者 Tongtong Luo Jianguo Wang +3 位作者 Li Chen Chaoya Sun Qian Liu Fenggang Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期167-179,共13页
Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It... Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development.In this paper,the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV(Static Standard Brittleness Value).A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters,the mineral content,and the in situ stress conditions(BIEMS).The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data.This coefficient is higher than that of other brittleness indices when compared to SSBV.BIEMS can offer detailed insights into shale brittleness under various conditions,including different mineral compositions,depths,and stress states.This technique can provide a solid data-based foundation for the selection of‘sweet spots’for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas. 展开更多
关键词 Deep shale reservoirs brittleness Pressure effect Evaluation method Longmaxi formation Sichuan Basin
在线阅读 下载PDF
An improved method to calculate the rock brittleness index PEECR based on linear energy storage law 被引量:1
6
作者 Fengqiang Gong Yiru Zuo +1 位作者 Song Luo Yunliang Wang 《Deep Resources Engineering》 2024年第1期27-40,共14页
The peak elastic strain energy consumption ratio(PEECR)is a rock brittleness index proposed by Gong and Wang.In the present study,based on the linear energy storage law of rock under triaxial compression,a new method ... The peak elastic strain energy consumption ratio(PEECR)is a rock brittleness index proposed by Gong and Wang.In the present study,based on the linear energy storage law of rock under triaxial compression,a new method was proposed to calculate the PEECR.The PEECR uses a simplified method to calculate the peak elastic strain energy.To solve this problem accurately,triaxial cyclic loading-unloading compression tests were carried out on shale.Strain energy parameters were calculated from the test curves.The results show that there is a linear relationship between the elastic strain energy and input strain energy,indicating that the linear energy storage law in rock is applicable to triaxial compression state.The universality of the linear energy storage law of rock under triaxial compression is also verified by the data in the published literature.Then,the peak elastic strain energy can be accurately determined using the linear energy storage law,and the PEECR is improved based on this.Finally,the PEECR and the improved PEECR were compared using the triaxial cyclic loading-unloading compression tests on three rocks(shale,red sandstone and granite),and the improved PEECR was compared with 11 existing energy-based brittleness indexes.The results show that the improved PEECR can further reflect the rock brittleness more accurately. 展开更多
关键词 Rock brittleness index Linear energy storage law Peak elastic strain energy Triaxial cyclic loading-unloading compression test
在线阅读 下载PDF
Systematic prediction of the gas content, fractures, and brittleness in fractured shale reservoirs with TTI medium
7
作者 Yun Zhao Xiao-Tao Wen +2 位作者 Chen-Long Li Yang Liu Chun-Lan Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3202-3221,共20页
The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and... The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and rock brittleness in fractured gas-bearing shale reservoirs. To better characterize gas-bearing shale reservoirs with tilted fractures, we optimized the petrophysical modeling based on the equivalent medium theory. Based on the advantages of shale petrophysical modeling, we not only considered the brittle mineral fraction but also the combined effect of shale porosity, gas saturation, and total organic carbon(TOC) when optimizing the brittleness index. Due to fractures generally functioning as essential channels for fluid storage and movement, fracture density and fracture fluid identification factors are critical geophysical parameters for fractured reservoir prediction. We defined a new fracture gas indication factor(GFI) to detect fracture-effective gas content. A new linear PP-wave reflection coefficient equation for a tilted transversely isotropic(TTI) medium was rederived, realizing the direct prediction of anisotropic fracture parameters and the isotropic elasticity parameters from offset vector tile(OVT)-domain seismic data. Synthetic seismic data experiments demonstrated that the inversion algorithm based on the L_P quasinorm sparsity constraint and the split-component inversion strategy exhibits high stability and noise resistance. Finally, we applied our new prediction method to evaluate fractured gas-bearing shale reservoirs in the Sichuan Basin of China, demonstrating its effectiveness. 展开更多
关键词 Petrophysical modeling brittleness index Fracture gas indication factor(GFI) Tilted transversely isotropic(TTI) Fracture density
原文传递
Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs 被引量:6
8
作者 黄欣芮 黄建平 +3 位作者 李振春 杨勤勇 孙启星 崔伟 《Applied Geophysics》 SCIE CSCD 2015年第1期11-22,120,共13页
Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph... Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs. 展开更多
关键词 brittleness index tight-oil sandstone reservoirs seismic rock physics model brittleness sensitivity anisotropy
在线阅读 下载PDF
Anomalous yield and intermediate temperature brittleness behaviors of directionally solidified nickel-based superalloy 被引量:10
9
作者 盛立远 杨芳 +1 位作者 郭建亭 奚廷斐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期673-681,共9页
A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observati... A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observations reveal that the γ' precipitates are arrayed in the y matrix regularly with some MC, Ni5Hf and M3B2 particles distributed along the grain boundary. The tensile tests exhibit that the tensile properties depend on temperature significantly and demonstrate obvious anomalous yield and intermediate-temperature brittleness (ITB) behavior. Below 650℃, the yield strength decreases slightly but the ultimate tensile strength almost has no change. When the temperature is between 650 ℃ and 750 ℃, the yield and ultimate tensile strengths rise rapidly, and after then they both decrease gradually with temperature increasing further. The elongation has its minimum value at about 700 ℃. The TEM examination exhibits that sharing of the γ' by dislocation is almost the main deformation mechanism at low temperatures, but the γ' by-pass dominates the deformation at high temperatures. The transition temperature from shearing to by-pass should be around 800 ℃. The anomalous yield and intermediate-temperature brittleness behaviors should be attributed to the high content of γ'. In addition, the carbides and eutectic structure also contribute some to the ITB behaviors of the alloy. 展开更多
关键词 nickel-based superalloy directional solidification anomalous yield intermediate-temperature brittleness microstructure
在线阅读 下载PDF
Evaluation of Urban Village Renovation System in Xi’an City of China Based on Brittleness Analysis
10
作者 冯璐 张佩 《Journal of Landscape Research》 2012年第4期40-42,46,共4页
Renovation system of urban villages in Xi'an City was evaluated. Influence factors of urban village renovation were analyzed on the basis of brittleness theory, and an evaluation index system established through m... Renovation system of urban villages in Xi'an City was evaluated. Influence factors of urban village renovation were analyzed on the basis of brittleness theory, and an evaluation index system established through multi-level inconsistency decomposing. By incorporating the catastrophe theory with fuzzy mathematical theory, the mathematic model was created, and catastrophe membership function was obtained as well as evaluation results. Policies for the renovation of urban villages and new direction of the renovation were interpreted. The application case proved that catastrophe progression method was objective and effective and it could provide new concepts for the evaluation and adjustment of urban village renovation. Moreover, application of brittleness theory in the research on urban village renovation is of great instruction and reference value for the present urban construction. 展开更多
关键词 Urban VILLAGE RENOVATION CATASTROPHE Progression Method brittleness EVALUATION Xi’an City
在线阅读 下载PDF
Rock brittleness indices and their applications to different fields of rock engineering:A review 被引量:20
11
作者 Fanzhen Meng Louis Ngai Yuen Wong Hui Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期221-247,共27页
Brittleness is an important parameter controlling the mechanical behavior and failure characteristics of rocks under loading and unloading conditions,such as fracability,cutability,drillability and rockburst proneness... Brittleness is an important parameter controlling the mechanical behavior and failure characteristics of rocks under loading and unloading conditions,such as fracability,cutability,drillability and rockburst proneness.As such,it is of high practical value to correctly evaluate rock brittleness.However,the definition and measurement method of rock brittleness have been very diverse and not yet been standardized.In this paper,the definitions of rock brittleness are firstly reviewed,and several representative definitions of rock brittleness are identified and briefly discussed.The development and role of rock brittleness in different fields of rock engineering are also studied.Eighty brittleness indices publicly available in rock mechanics literature are compiled,and the measurement method,applicability and limitations of some indices are discussed.The results show that(1)the large number of brittleness indices and brittleness definitions is attributed to the different foci on the rock behavior when it breaks;(2)indices developed in one field usually are not directly applicable to other fields;and(3)the term“brittleness”is sometimes misused,and many empirically-obtained brittleness indices,which lack theoretical basis,fail to truly reflect rock brittleness.On the basis of this review,three measurement methods are identified,i.e.(1)elastic deformation before fracture,(2)shape of post-peak stressestrain curves,and(3)methods based on fracture mechanics theory,which have the potential to be further refined and unified to become the standard measurement methods of rock brittleness.It is highly beneficial for the rock mechanics community to develop a robust definition of rock brittleness.This study will undoubtedly provide a comprehensive timely reference for selecting an appropriate brittleness index for their applications,and will also pave the way for the development of a standard definition and measurement method of rock brittleness in the long term. 展开更多
关键词 Rock brittleness Practical applicability Hydraulic fracturing Rockburst proneness Crack propagation Fragmentation efficiency
在线阅读 下载PDF
Construction of a novel brittleness index equation and analysis of anisotropic brittleness characteristics for unconventional shale formations 被引量:8
12
作者 Ke-Ran Qian Tao Liu +3 位作者 Jun-Zhou Liu Xi-Wu Liu Zhi-Liang He Da-Jian Jiang 《Petroleum Science》 SCIE CAS CSCD 2020年第1期70-85,共16页
The brittleness prediction of shale formations is of interest to researchers nowadays.Conventional methods of brittleness prediction are usually based on isotropic models while shale is anisotropic.In order to obtain ... The brittleness prediction of shale formations is of interest to researchers nowadays.Conventional methods of brittleness prediction are usually based on isotropic models while shale is anisotropic.In order to obtain a better prediction of shale brittleness,our study firstly proposed a novel brittleness index equation based on the Voigt–Reuss–Hill average,which combines two classical isotropic methods.The proposed method introduces upper and lower brittleness bounds,which take the uncertainty of brittleness prediction into consideration.In addition,this method can give us acceptable predictions by using limited input values.Secondly,an anisotropic rock physics model was constructed.Two parameters were introduced into our model,which can be used to simulate the lamination of clay minerals and the dip angle of formation.In addition,rock physics templates have been built to analyze the sensitivity of brittleness parameters.Finally,the effects of kerogen,pore structure,clay lamination and shale formation dip have been investigated in terms of anisotropy.The prediction shows that the vertical/horizontal Young’s modulus is always below one while the vertical/horizontal Poisson’s ratio(PR)can be either greater or less than 1.Our study finds different degrees of shale lamination may be the explanation for the random distribution of Vani(the ratio of vertical PR to horizontal PR). 展开更多
关键词 brittleness SHALE Rock Physics ANISOTROPY Voigt–Reuss–Hill AVERAGE
原文传递
Research on basic characteristics of complex system brittleness 被引量:10
13
作者 JINHong-zhang GUOJian WEIQi LINDe-ming LIQi 《Journal of Marine Science and Application》 2004年第1期57-63,共7页
The goal of this paper is to research one new characteristic of complex system. Brittleness, which is one new characteritic of complex system, is presented in this paper. The linguistic and qualitative descriptions of... The goal of this paper is to research one new characteristic of complex system. Brittleness, which is one new characteritic of complex system, is presented in this paper. The linguistic and qualitative descriptions of complex system are also given in this paper. Otherwise, the qualitative description of complex system is presented at first. On the basis of analyzing the existing brittleness problems, linguistic description and mathematic description of brittleness are given as well. Three kinds of phenomena to judge brittleness of complex system are also given, based on catastrophe theory. Basic characteristics of brittleness are given on the basis of its mathematic description. Two critical point sets are defined by using catastrophe theory. The definition of brittleness and its related theory can serve the control of complex system, and provide theoretical basis for the design and control of complex system. 展开更多
关键词 brittleness complex system CRITERION basic characteristic catastrophe theory
在线阅读 下载PDF
Pre-stack basis pursuit seismic inversion for brittleness of shale 被引量:8
14
作者 Xing-Yao Yin Xiao-Jing Liu Zhao-Yun Zong 《Petroleum Science》 SCIE CAS CSCD 2015年第4期618-627,共10页
Brittleness of rock plays a significant role in exploration and development of shale gas reservoirs. Young's modulus and Poisson's ratio are the key param- eters for evaluating the rock brittleness in shale gas expl... Brittleness of rock plays a significant role in exploration and development of shale gas reservoirs. Young's modulus and Poisson's ratio are the key param- eters for evaluating the rock brittleness in shale gas exploration because their combination relationship can quantitatively characterize the rock brittleness. The high- value anomaly of Young's modulus and the low-value anomaly of Poisson's ratio represent high brittleness of shale. The technique of pre-stack amplitude variation with angle inversion allows geoscientists to estimate Young's modulus and Poisson's ratio from seismic data. A model constrained basis pursuit inversion method is proposed for stably estimating Young's modulus and Poisson's ratio. Test results of synthetic gather data show that Young's modulus and Poisson's ratio can be estimated reasonably. With the novel method, the inverted Young's modulus and Poisson's ratio of real field data focus the layer boundaries better, which is helpful for us to evaluate the brittleness of shale gas reservoirs. The results of brittleness evaluation show a good agreement with the results of well interpretation. 展开更多
关键词 brittleness Shale gas Amplitude variationwith angle Basis pursuit Bayesian framework
原文传递
Influence of brittleness and confining stress on rock cuttability based on rock indentation tests 被引量:7
15
作者 WANG Shao-feng TANG Yu WANG Shan-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2786-2800,共15页
In order to understand the influence of brittleness and confining stress on rock cuttability,the indentation tests were carried out by a conical pick on the four types of rocks.Then,the experimental results were utili... In order to understand the influence of brittleness and confining stress on rock cuttability,the indentation tests were carried out by a conical pick on the four types of rocks.Then,the experimental results were utilized to take regression analysis.The eight sets of normalized regression models were established for reflecting the relationships of peak indentation force(PIF)and specific energy(SE)with brittleness index and uniaxial confining stress.The regression analyses present that these regression models have good prediction performance.The regressive results indicate that brittleness indices and uniaxial confining stress conditions have non-linear effects on the rock cuttability that is determined by PIF and SE.Finally,the multilayer perceptual neural network was used to measure the importance weights of brittleness index and uniaxial confining stress upon the influence for rock cuttability.The results indicate that the uniaxial confining stress is more significant than brittleness index for influencing the rock cuttability. 展开更多
关键词 rock cuttability brittleness index uniaxial confining pressures regression analysis multilayer perceptual neural network importance analysis
在线阅读 下载PDF
Brittleness characteristics of tight oil siltstones 被引量:6
16
作者 Tan Wen-Hui Ba Jing +4 位作者 Guo Meng-Qiu Li Hui Zhang Lin Yu Ting Chen Hao 《Applied Geophysics》 SCIE CSCD 2018年第2期175-187,361,共14页
Rock brittleness directly affects reservoir fracturing and its evaluation is essential for establishing fracturing conditions prior to reservoir reforming. Dynamic and static brittleness data were collected from silts... Rock brittleness directly affects reservoir fracturing and its evaluation is essential for establishing fracturing conditions prior to reservoir reforming. Dynamic and static brittleness data were collected from siltstones of the Qingshankou Formation in Songliao Basin. The brittle-plastic transition was investigated based on the stress-strain relation. The results suggest that the brittleness indices calculated by static elastic parameters are negatively correlated with the stress drop coefficient and the brittleness index B2, defined as the average of the normalized Young's modulus and Poisson's ratio, is strongly correlated with the stress drop. The brittleness index B2, Young's modulus, and Poisson's ratio correlate with the brittle minerals content; that is, quartz, carbonates, and pyrite. We also investigated the correlation between pore fluid and porosity and dynamic brittle characteristic based on index B2. Pore fluid increases the plasticity of rock and reduces brittleness; moreover, with increasing porosity, rock brittleness decreases. The gas-saturated siltstone brittleness index is higher than that in oil- or water-saturated siltstone; the difference in the brittleness indices of oil- and water-saturated siltstone is very small. By comparing the rock mechanics and ultrasonic experiments, we find that the brittleness index obtained from the rock mechanics experiments is smaller than that obtained from the ultrasonic experiments; nevertheless, both decrease with increasing porosity as well as their differences. Ultrasonic waves propagate through the rock specimens without affecting them, whereas rock mechanics experiments are destructive and induce microcracking and porosity increases; consequently, the brittleness of low-porosity rocks is affected by the formation of internal microcrack systems. 展开更多
关键词 Rock mechanics ultrasonic wave brittleness MINERALOGY pore fluid POROSITY
在线阅读 下载PDF
The construction of shale rock physics model and brittleness prediction for high-porosity shale gas-bearing reservoir 被引量:9
17
作者 Xin-Peng Pan Guang-Zhi Zhang Jiao-Jiao Chen 《Petroleum Science》 SCIE CAS CSCD 2020年第3期658-670,共13页
Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale roc... Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale rock physics model is significant for the exploration and development of shale reservoirs.To make a better characterization of shale gas-bearing reservoirs,we first propose a new but more suitable rock physics model to characterize the reservoirs.We then use a well A to demonstrate the feasibility and reliability of the proposed rock physics model of shale gas-bearing reservoirs.Moreover,we propose a new brittleness indicator for the high-porosity and organic-rich shale gas-bearing reservoirs.Based on the parameter analysis using the constructed rock physics model,we finally compare the new brittleness indicator with the commonly used Young’s modulus in the content of quartz and organic matter,the matrix porosity,and the types of filled fluids.We also propose a new shale brittleness index by integrating the proposed new brittleness indicator and the Poisson’s ratio.Tests on real data sets demonstrate that the new brittleness indicator and index are more sensitive than the commonly used Young’s modulus and brittleness index for the high-porosity and high-brittleness shale gas-bearing reservoirs. 展开更多
关键词 Shale gas Rock physics model brittleness prediction
原文传递
Characterization and evaluation of brittleness of deep bedded sandstone from the perspective of the whole life-cycle evolution process 被引量:6
18
作者 Zhixiang Song Junwen Zhang +2 位作者 Yang Zhang Xukai Dong Shanyong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期481-502,共22页
The quantitative determination and evaluation of rock brittleness are crucial for the estimation of excavation efficiency and the improvement of hydraulic fracturing efficiency.Therefore,a“three-stage”triaxial loadi... The quantitative determination and evaluation of rock brittleness are crucial for the estimation of excavation efficiency and the improvement of hydraulic fracturing efficiency.Therefore,a“three-stage”triaxial loading and unloading stress path is designed and proposed.Subsequently,six brittleness indices are selected.In addition,the evolution characteristics of the six brittleness indices selected are characterized based on the bedding effect and the effect of confining pressure.Then,the entropy weight method(EWM)is introduced to assign weight to the six brittleness indices,and the comprehensive brittleness index Bcis defined and evaluated.Next,the new brittleness classification standard is determined,and the brittleness differences between the two stress paths are quantified.Finally,compared with the previous evaluation methods,the rationality of the proposed comprehensive brittleness index Bcis also verified.These results indicate that the proposed brittleness index Bccan reflect the brittle characteristics of deep bedded sandstone from the perspective of the whole life-cycle evolution process.Accordingly,the method proposed seems to offer reliable evaluations of the brittleness of deep bedded sandstone in deep engineering practices,although further validation is necessary. 展开更多
关键词 brittleness Deep bedded sandstone Whole life-cycle evolution process Bedding effect Effect of confining pressure Entropy weight method
在线阅读 下载PDF
Brittleness research on complex system based on brittle link entropy 被引量:6
19
作者 RONG Pan-xiang JIN Hong-zhang WEI Qi 《Journal of Marine Science and Application》 2006年第2期51-54,共4页
As the scale of complex system is growing larger and larger, interferences from internal and outer system can result in the collapse of one subsystem in a complex system. They will not only make one subsystem collapse... As the scale of complex system is growing larger and larger, interferences from internal and outer system can result in the collapse of one subsystem in a complex system. They will not only make one subsystem collapse but also influence the other subsystems. Moreover, the whole complex system can collapse consequently. The mechanism of collapse of complex system is clue to the brittleness of complex system that is presented and argued as the basic characteristic in this paper. It is the brittleness link entropy between subsystems that leads to the collapse of whole system. Effective ways that can be adopted to reduce the brittleness entropy can see the successful control of brittleness. 展开更多
关键词 complex system brittleness brittle link entropy COLLAPSE
在线阅读 下载PDF
Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale 被引量:4
20
作者 Qian Ke-Ran He Zhi-Liang +2 位作者 Chen Ye-Quan Liu Xi-Wu Li Xiang-Yang 《Applied Geophysics》 SCIE CSCD 2017年第4期463-479,620,共18页
The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existin... The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the self- consistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BL Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction. 展开更多
关键词 Rock physics modeling brittleness SHALE ANISOTROPY
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部