期刊文献+
共找到309篇文章
< 1 2 16 >
每页显示 20 50 100
A Simple and Robust Mesh Refinement Implementation in Abaqus for Phase Field Modelling of Brittle Fracture
1
作者 Anshul Pandey Sachin Kumar 《Computer Modeling in Engineering & Sciences》 2025年第9期3251-3286,共36页
The phase field model can coherently address the relatively complex fracture phenomenon,such as crack nucleation,branching,deflection,etc.The model has been extensively implemented in the finite element package Abaqus... The phase field model can coherently address the relatively complex fracture phenomenon,such as crack nucleation,branching,deflection,etc.The model has been extensively implemented in the finite element package Abaqus to solve brittle fracture problems in recent studies.However,accurate numerical analysis typically requires fine meshes to model the evolving crack path effectively.A broad region must be discretized without prior knowledge of the crack path,further augmenting the computational expenses.In this proposed work,we present an automated framework utilizing a posteriori error-indicator(MISESERI)to demarcate and sufficiently refine the mesh along the anticipated crack path.This eliminates the need for manual mesh refinement based on previous experimental/computational results or heuristic judgment.The proposed Python-based framework integrates the preanalysis,sufficient mesh refinement,and subsequent phase-field model-based numerical analysis with user-defined subroutines in a single streamlined pass.The novelty of the proposed work lies in integrating Abaqus’s native error estimation and mesh refinement capability,tailored explicitly for phase-field simulations.The proposed methodology aims to reduce the computational resource requirement,thereby enhancing the efficiency of the phase-field simulations while preserving the solution accuracy,making the framework particularly advantageous for complex fracture problems where the computational/experimental results are limited or unavailable.Several benchmark numerical problems are solved to showcase the effectiveness and accuracy of the proposed approach.The numerical examples present the proposed approach’s efficacy in the case of a complex mixed-mode fracture problem.The results show significant reductions in computational resources compared to traditional phase-field methods,which is promising. 展开更多
关键词 PHASE-FIELD brittle fracture mesh refinement Abaqus UEL Python scripting
在线阅读 下载PDF
Compressive damage constitutive model for brittle coal based on the compaction effect and linear energy dissipation law
2
作者 Fengqiang Gong Lei Xu +2 位作者 Mingzhong Gao Yingjie Zhao Peilei Zhang 《International Journal of Coal Science & Technology》 2025年第3期225-247,共23页
The study of the mechanical property and damage state of coal materials under compression is a fundamental area of research in underground mining engineering.Drawing upon the compaction effect and linear energy dissip... The study of the mechanical property and damage state of coal materials under compression is a fundamental area of research in underground mining engineering.Drawing upon the compaction effect and linear energy dissipation(LED)law,a novel compressive damage constitutive model for brittle coal is proposed.Utilizing the energy-defined damage method for mate-rials,the LED law is innovatively introduced to accurately characterize the energy dissipation during the loading process,and a novel formula for characterizing the damage variable of brittle coal is proposed.On this basis,considering that the constitutive model based on the hypothesis of strain equivalence is incapable of accurately describing the compaction effect exhibited by coal material during the compression process,a correction coefficient is proposed and apply it in the novel damage constitutive model.The established conventional monotone loading and single-cyclic loading-unloading uniaxial compression damage constitutive models have been validated using experimental data from cylindrical and cuboid coal specimens.In addition,compared with the constitutive model obtained via the traditional energy calculation method based on the hypothesis that the unloading curve is a straight line,the constitutive model employing LED law can describe the stress-strain state of brittle coal more precisely.This approach introduces a new perspective and enhances the convenience for constructing the constitutive model based on energy theory. 展开更多
关键词 DAMAGE Constitutive model Compaction effect brittle coal Linear energy dissipation law
在线阅读 下载PDF
Dynamic micro-macro fatigue fracture under cyclic direct tensile impacts in brittle rocks
3
作者 LI Xiaozhao YAN Huaiwei +1 位作者 LUO Qiulin QI Chengzhi 《Journal of Mountain Science》 2025年第5期1848-1858,共11页
The fatigue fracture under cyclic dynamic direct tensions of brittle rock is an important mechanical characteristic index for the evaluation of geological disasters and underground engineering safety.However,most stud... The fatigue fracture under cyclic dynamic direct tensions of brittle rock is an important mechanical characteristic index for the evaluation of geological disasters and underground engineering safety.However,most studies focus on macroscopic fracture mechanical properties,and the mechanism linking the macroscopic fracture with the microcrack growth during the cyclic dynamic direct tensile loading of brittle rocks is rarely studied.In this paper,a micro-macro fracture model explaining the stress-strain constitutive relationship is established at the last impact failure after being subjected to multiple cyclic direct tensile impacts of brittle rocks.This model is based on the wing crack extension model under direct tensile loading,the quasi-static and dynamic fracture toughness relationship,the suggested crack rate and strain rate relationship,the relationship of damage and dynamic tensile fatigue life N,the relationship of dynamic fracture toughness and dynamic tensile fatigue life N.The variations of dynamic mechanical properties of rocks with dynamic tensile fatigue life for different initial crack sizes and angles within the rocks are further discussed.The compressive strength,elastic modulus,crack initiation stress,limit crack extension length and crack extension rate descend and the failure strain ascends with an increment of dynamic tensile fatigue life in rocks.This study's results provide help for the safety and stability of the underground surrounding rocks under blasting working or seismic disasters. 展开更多
关键词 brittle rock Micro-macro fracture Cyclic dynamic direct tensile impact Fatigue life Constitutive relationship
原文传递
Characterization of elastic modulus and hardness of brittle solids by instrumented indentation
4
作者 Zhitong Xu Ming Liu Jianghong Gong 《Acta Mechanica Sinica》 2025年第1期141-162,共22页
The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis ... The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT). 展开更多
关键词 brittle solids NANOINDENTATION Elastic modulus HARDNESS Elastic recovery of Knoop imprint
原文传递
A Feasible Experimental Method to Measure the Adhesive Strength of Brittle Adherends
5
作者 Qiuhong Liu Shuo Sun +4 位作者 Xiang Wu Zhiqiang Chen Hongjie Guo Chen Duan Zhengjin Wang 《Acta Mechanica Solida Sinica》 2025年第4期598-611,共14页
Brittle materials,such as silicon,glass,and ceramics,are widely used in engineering via adhesive bonding.The assessment of adhesive strength of brittle materials to other adherends is essential for their applications.... Brittle materials,such as silicon,glass,and ceramics,are widely used in engineering via adhesive bonding.The assessment of adhesive strength of brittle materials to other adherends is essential for their applications.Compared with metals and composites,for which standard testing methods have been established,the experimental method for brittle adherends has been much less explored.During the adhesive strength test,the brittleness of these materials makes them prone to failure,rather than the interface.It remains a challenge to measure the adhesive strength of brittle adherends.Here we develop an experimental method to address this issue by using a strap joint specimen with a backing layer.We use a single crystal silicon wafer and two PCB(printed circuit board)strips as adherends to make a strap joint specimen.A steel backing layer is glued to the silicon wafer to prevent the failure of silicon.This method enables the measurement of adhesive strength up to 35 MPa.In contrast,that without backing layer can only measure the adhesive strength below 10 MPa.It is found that the backing layer can reduce the stress in the silicon remarkably,while it has much less effect on the stress in the adhesive layer.We confirm that the backing layer has a negligible effect on the measured adhesive strength but expands the working space greatly.Combining finite element analysis and experiments,we establish the phase diagram for the failure modes.This work provides guidance for the measurement of adhesive strength of brittle materials. 展开更多
关键词 Adhesive strength brittle adherend Failure modes Backing layer
原文传递
An analytical solution of direction evolution of crack growth during progressive failure in brittle rocks
6
作者 Xiaozhao Li Lianjie Li +4 位作者 Fayuan Yan Chengzhi Qi Mikhail A.Guzev Evgenii V.Kozhevnikov Artem A.Kunitskikh 《Deep Underground Science and Engineering》 2025年第3期452-460,共9页
Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth... Microcrack growth during progressive compressive failure in brittle rocks strongly influences the safety of deep underground engineering.The external shear stressτxy on brittle rocks greatly affects microcrack growth and progressive failure.However,the theoretical mechanism of the growth direction evolution of the newly generated wing crack during progressive failure has rarely been studied.A novel analytical method is proposed to evaluate the shear stress effect on the progressive compressive failure and microcrack growth direction in brittle rocks.This model consists of the wing crack growth model under the principal compressive stresses,the direction correlation of the general stress,the principal stress and the initial microcrack inclination,and the relationship between the wing crack length and strain.The shear stress effect on the relationship between y-direction stress and wing crack growth and the relationship between y-direction stress and y-direction strain are analyzed.The shear stress effect on the wing crack growth direction during the progressive compressive failure is determined.The initial crack angle effect on the y-direction peak stress and the wing crack growth direction during the progressive compressive failure considering shear stress is also discussed.A crucial conclusion is that the direction of wing crack growth has a U-shaped variation with the growth of the wing crack.The rationality of the analytical results is verified by an experiment and from numerical results.The study results provide theoretical support for the evaluation of the safety and stability of surrounding rocks in deep underground engineering. 展开更多
关键词 brittle rocks initial crack angle progressive failure shear stress wing crack growth direction
原文传递
Microstructure effect of mechanical and cracking behaviors on brittle rocks using image-based fast Fourier transform method
7
作者 Mingyao Li Lei Peng +1 位作者 Dejun Liu Jianping Zuo 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期399-413,共15页
The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significan... The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics. 展开更多
关键词 Rock microstructure Cracking process brittle rocks Fast Fourier transform(FFT) Digital image processing(DIP)
在线阅读 下载PDF
Intelligent seismic AVO inversion method for brittleness index of shale oil reservoirs
8
作者 Yu-Hang Sun Hong-Li Dong +4 位作者 Gui Chen Xue-Gui Li Yang Liu Xiao-Hong Yu Jun Wu 《Petroleum Science》 2025年第2期627-640,共14页
The brittleness index(BI)is crucial for predicting engineering sweet spots and designing fracturing operations in shale oil reservoir exploration and development.Seismic amplitude variation with offset(AVO)inversion i... The brittleness index(BI)is crucial for predicting engineering sweet spots and designing fracturing operations in shale oil reservoir exploration and development.Seismic amplitude variation with offset(AVO)inversion is commonly used to obtain the BI.Traditionally,velocity,density,and other parameters are firstly inverted,and the BI is then calculated,which often leads to accumulated errors.Moreover,due to the limited of well-log data in field work areas,AVO inversion typically faces the challenge of limited information,resulting in not high accuracy of BI derived by existing AVO inversion methods.To address these issues,we first derive an AVO forward approximation equation that directly characterizes the BI in P-wave reflection coefficients.Based on this,an intelligent AVO inversion method,which combines the advantages of traditional and intelligent approaches,for directly obtaining the BI is proposed.A TransUnet model is constructed to establish the strong nonlinear mapping relationship between seismic data and the BI.By incorporating a combined objective function that is constrained by both low-frequency parameters and training samples,the challenge of limited samples is effectively addressed,and the direct inversion of the BI is stably achieved.Tests on model data and applications on field data demonstrate the feasibility,advancement,and practicality of the proposed method. 展开更多
关键词 brittleness index Shale oil reservoirs Seismic AVO inversion TransU-net model
原文传递
Brittleness evaluation of gas-bearing coal based on statistical damage constitution model and energy evolution mechanism
9
作者 XUE Yi WANG Lin-chao +5 位作者 LIU Yong RANJITH P G CAO Zheng-zheng SHI Xu-yang GAO Feng KONG Hai-ling 《Journal of Central South University》 2025年第2期566-581,共16页
Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a ... Accurate assessment of coal brittleness is crucial in the design of coal seam drilling and underground coal mining operations.This study proposes a method for evaluating the brittleness of gas-bearing coal based on a statistical damage constitutive model and energy evolution mechanisms.Initially,integrating the principle of effective stress and the Hoek-Brown criterion,a statistical damage constitutive model for gas-bearing coal is established and validated through triaxial compression tests under different gas pressures to verify its accuracy and applicability.Subsequently,employing energy evolution mechanism,two energy characteristic parameters(elastic energy proportion and dissipated energy proportion)are analyzed.Based on the damage stress thresholds,the damage evolution characteristics of gas bearing coal were explored.Finally,by integrating energy characteristic parameters with damage parameters,a novel brittleness index is proposed.The results demonstrate that the theoretical curves derived from the statistical damage constitutive model closely align with the test curves,accurately reflecting the stress−strain characteristics of gas-bearing coal and revealing the stress drop and softening characteristics of coal in the post-peak stage.The shape parameter and scale parameter represent the brittleness and macroscopic strength of the coal,respectively.As gas pressure increases from 1 to 5 MPa,the shape parameter and the scale parameter decrease by 22.18%and 60.45%,respectively,indicating a reduction in both brittleness and strength of the coal.Parameters such as maximum damage rate and peak elastic energy storage limit positively correlate with coal brittleness.The brittleness index effectively captures the brittleness characteristics and reveals a decrease in brittleness and an increase in sensitivity to plastic deformation under higher gas pressure conditions. 展开更多
关键词 gas pressure statistical damage constitutive model energy evolution mechanism brittleness evaluation gas bearing coal
在线阅读 下载PDF
Inhibition of the intergranular brittleness of HR3C heat-resistant steel by strain-aging induced nano-M23C6 dispersion precipitation
10
作者 Xuehan Wang Lining Xu +4 位作者 Lang Jiao Wenyao Li Jinna Mei Yanfen Zhao Lijie Qiao 《Journal of Materials Science & Technology》 2025年第10期288-299,共12页
M23C6 chromium-rich carbides are common grain-boundary precipitations in Cr-containing steel.The presence of grain-boundary carbides often leads to intergranular brittleness and decreases mechanical properties.This st... M23C6 chromium-rich carbides are common grain-boundary precipitations in Cr-containing steel.The presence of grain-boundary carbides often leads to intergranular brittleness and decreases mechanical properties.This study proposes a deformation and aging technique to obtain a high-volume-fraction dispersion distribution of the hard nano-M23C6 phase by changing the nucleation sites from grain boundaries to deformation coherent twin boundaries produced during cold deformation.The M23C6 precipitation-strengthened austenitic stainless steel has a strength of up to 1.4 GPa but maintains favorable plasticity(>11%).This study provides a novel approach for the control of intergranular brittleness in metallic materials. 展开更多
关键词 HR3C steel M23C6 chromium-rich carbides Cold deformation Intergranular brittleness Deformation coherent twin boundary
原文传递
Prediction of brittle rock failure severity:An approach based on rock mass failure progress 被引量:1
11
作者 Shengwen Qi Songfeng Guo +2 位作者 Muhammad Faisal Waqar Guangming Luo Shishu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第12期4852-4865,共14页
This study presents the classification and prediction of severity for brittle rock failure,focusing on failure behaviors and excessive determination based on damage depth.The research utilizes extensive field survey d... This study presents the classification and prediction of severity for brittle rock failure,focusing on failure behaviors and excessive determination based on damage depth.The research utilizes extensive field survey data from the Shuangjiangkou Hydropower Station and previous research findings.Based on field surveys and previous studies,four types of brittle rock failure with different failure mechanisms are classified,and then a prediction method is proposed.This method incorporates two variables,i.e.Kv(modified rock mass integrity coefficient)and GSI(geological strength index).The prediction method is applied to the first layer excavation of the powerhouse cavern of Shuangjiangkou Hydropower Station.The results show that the predicted brittle rock failure area agrees with the actual failure area,demonstrating the method’s applicability.Next,it extends to investigate brittle rock failure in two locations.The first is the k0-890 m section of the traffic cavern,and the second one is at K0-64 m of the main powerhouse.The criterion-based prediction indicates a severity brittle rock failure in the K0-890 m section,and a moderate brittle rock failure in the K0-64 m section,which agrees with the actual occurrence of brittle rock failure in the field.The understanding and application of the prediction method using Kv and GSI are vital for implementing a comprehensive brittle rock failure prediction process in geological engineering.To validate the adaptability of this criterion across diverse tunnel projects,a rigorous verification process using statistical findings was conducted.The assessment outcomes demonstrate high accuracy for various tunnel projects,allowing establishment of the correlations that enable valuable conclusions regarding brittle rock failure occurrence.Further validation and refinement through field and laboratory testing,as well as simulations,can broaden the contribution of this method to safer and more resilient underground construction. 展开更多
关键词 ROCKBURST brittle failure Progressive failure High in situ stress Prediction method Underground excavation
在线阅读 下载PDF
A statistical damage-based constitutive model for shearing of rock joints in brittle drop mode 被引量:1
12
作者 Xinrong Liu Peiyao Li +5 位作者 Xueyan Guo Xinyang Luo Xiaohan Zhou Luli Miao Fuchuan Zhou Hao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1041-1058,共18页
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum... Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations. 展开更多
关键词 Rock joints brittle rock Direct shear test Damage-based constitutive model Parameters analysis
在线阅读 下载PDF
Significantly ameliorating room-temperature brittleness of refractory high-entropy alloys via in situ heterogeneous structure 被引量:1
13
作者 Dong Han Baijun Yang +4 位作者 Wenlong Xu Hongwang Yang Guofeng Han Xiaoming Wang Jianqiang Wang 《Journal of Materials Science & Technology》 CSCD 2024年第26期1-17,共17页
Although refractory high-entropy alloys(RHEAs)possess excellent softening resistance and thermal sta-bility at high temperatures,their practical application is often limited due to room temperature(RT)brit-tleness.In ... Although refractory high-entropy alloys(RHEAs)possess excellent softening resistance and thermal sta-bility at high temperatures,their practical application is often limited due to room temperature(RT)brit-tleness.In this work,we successfully achieved RT plasticization in a brittle(TaMoTi)_(92)Al_(8)RHEA via in situ forming heterogeneous structure(HS)with the doping of Zr.Different from the mainstream design con-cept of“soft solid solution matrices with hard intermetallic phases”proposed in the literature,the newly developed TaMoZrTiAl RHEA is featured by a hard disordered BCC phase embedded into a soft intermetal-lic B2 matrix.Such an HS leads to the remarkable strength-plasticity synergy in this alloy at RT,showing a large plasticity of>20%,associated with a high strength of>2380 MPa.It was found that solid solu-tion strengthening and heterodeformation-induced strengthening caused by dislocation pile-ups at phase boundaries are responsible for the enhancement in the yield strength,while deformation-induced strain partition and the frequent operation of dislocation cross-slip substantially improve the work hardening capacity of alloy,thus enabling the high strength and good RT plasticity.In short,the current work not only reveals the micromechanisms of the influence of heterogeneous dual-phase structure on the RT me-chanical behaviour in RHEAs but also provides a useful strategy for plasticizing brittle RHEAs. 展开更多
关键词 Refractory high-entropy alloy Heterogeneous structure Heterodeformation-induced hardening brittleNESS PLASTICITY B2 phase
原文传递
Advances in peridynamics modeling of deformation and fracturing of brittle geomaterials 被引量:2
14
作者 Feng Tian Zaobao Liu +3 位作者 Hongbo Li Enda Zhang Jinxin Zhou Jian-fu Shao 《Deep Resources Engineering》 2024年第3期57-81,共25页
Peridynamics(PD)is an emerging method that establishes a theoretical framework based on non-local theory to describe material mechanical behavior with spatial integral equations.It gives a unified expression of the me... Peridynamics(PD)is an emerging method that establishes a theoretical framework based on non-local theory to describe material mechanical behavior with spatial integral equations.It gives a unified expression of the me-dium including state transformation and characterization in different scales.It is showing great potential for evaluating the complicated mechanical behaviors of brittle solids.In the past two decades,peridynamics has been showing its great potential and advantages in modeling crackings of brittle materials although there are many challenges.The present paper summarizes firstly the theoretical framework and advantages of peridy-namics for modeling fracturing.It introduces then the theoretical improvements to address challenges of peri-dynamics in modeling brittle solid crackings including the release of Poisson ratio limit,different fracture criteria,contact-friction models,coupled constitutive models,and computing accuracy.Afterward,the extension of peridynamics is introduced to the coupled modeling with the other methods such as finite element method,phase field method,and particle-like method before its applications in static and dynamic cracking as well as those under impacts.Meanwhile,some contents that require further exploration are briefly summarized.Finally,the blind spots and future development of peridynamics are analyzed and discussed for the deformation and fracturing modeling of brittle geomaterials. 展开更多
关键词 PERIDYNAMICS Non-local theory Discontinuous problem brittle geomaterials Numerical simulation
在线阅读 下载PDF
A microscopic approach to brittle creep and time-dependent fracturing of rocks based on stress corrosion model 被引量:1
15
作者 Tao Xu Zhen Heng +3 位作者 Ben Liu Michael J.Heap P.L.P.Wasantha Zhiguo Li 《Deep Resources Engineering》 2024年第3期12-29,共18页
A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in bri... A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in brittle rocks at a micro-scale level.Experimental validation of the model is performed,followed by numerical simu-lations to investigate the creep properties and microcrack evolution in rocks under single-stage loading,multi-stage loading,and confining pressure,at various constant stress levels.The results demonstrate that as the stress level increases in single-stage creep simulations,the time-to-failure progressively decreases.The growth of microcracks during uniaxial creep occurs in three stages,with tensile microcracks being predominant and the spatial distribution of microcracks becoming more dispersed at higher stress levels.In multi-stage loadingunloading simulations,microcracks continue to form during the unloading stage,indicating cumulative damage resulting from increased axial stress.Additionally,the creep behaviour of rocks under confining pressure is not solely determined by the magnitude of the confining pressure,but is also influenced by the magnitude of the axial stress.The findings contribute to a better understanding of rock deformation and failure processes under different loading conditions,and they can be valuable for applications in rock mechanics and rock engineering. 展开更多
关键词 Time-dependent cracking CREEP Damage brittle rocks Micromechanical modeling
在线阅读 下载PDF
Linear and Nonlinear Formulation of Phase Field Model with Generalized Polynomial Degradation Functions for Brittle Fractures
16
作者 Ala Tabiei Li Meng 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第5期643-661,共19页
The classical phase field model has wide applications for brittle materials,but nonlinearity and inelasticity are found in its stress-strain curve.The degradation function in the classical phase field model makes it a... The classical phase field model has wide applications for brittle materials,but nonlinearity and inelasticity are found in its stress-strain curve.The degradation function in the classical phase field model makes it a linear formulation of phase field and computationally attractive,but stiffness reduction happens even at low strain.In this paper,generalized polynomial degradation functions are investigated to solve this problem.The first derivative of degradation function at zero phase is added as an extra constraint,which renders higher-order polynomial degradation function and nonlinear formulation of phase field.Compared with other degradation functions(like algebraic fraction function,exponential function,and trigonometric function),this polynomial degradation function enables phase in[0,1](should still avoid the first derivative of degradation function at zero phase to be 0),so there is noconvergence problem.The good and meaningful finding is that,under the same fracture strength,the proposed phase field model has a larger length scale,which means larger element size and better computational efficiency.This proposed phase field model is implemented in LS-DYNA user-defined element and user-defined material and solved by the Newton-Raphson method.A tensile test shows that the first derivative of degradation function at zero phase does impact stress-strain curve.Mode I,mode II,and mixed-mode examples show the feasibility of the proposed phase field model in simulating brittle fracture. 展开更多
关键词 Nonlinear formulation Generalized polynomial degradation function brittle materials Stress-strain curve CONVERGENCE
原文传递
Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
17
作者 Zediao Chen Feng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2215-2236,共22页
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ... Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials. 展开更多
关键词 Discontinuous deformation analysis particle DDA crack propagation crack branching brittle materials
在线阅读 下载PDF
Fourth-order phase-field modeling for brittle fracture in piezoelectric materials
18
作者 Yu TAN Fan PENG +2 位作者 Chang LIU Daiming PENG Xiangyu LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期837-856,共20页
Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilt... Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications. 展开更多
关键词 isogeometric analysis(IGA) brittle fracture fourth-order phase-field model piezoelectric solid
在线阅读 下载PDF
Quantitative characterization of the brittleness of deep shales by integrating mineral content,elastic parameters,in situ stress conditions and logging analysis
19
作者 Tongtong Luo Jianguo Wang +3 位作者 Li Chen Chaoya Sun Qian Liu Fenggang Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期167-179,共13页
Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It... Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development.In this paper,the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV(Static Standard Brittleness Value).A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters,the mineral content,and the in situ stress conditions(BIEMS).The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data.This coefficient is higher than that of other brittleness indices when compared to SSBV.BIEMS can offer detailed insights into shale brittleness under various conditions,including different mineral compositions,depths,and stress states.This technique can provide a solid data-based foundation for the selection of‘sweet spots’for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas. 展开更多
关键词 Deep shale reservoirs brittleNESS Pressure effect Evaluation method Longmaxi formation Sichuan Basin
在线阅读 下载PDF
Quantitative Evaluation of Rock Brittle Property Based on Energy Evolution and Its Application in Three Gorges Reservoir Area
20
作者 Tao Wen Yankun Wang Huiming Tang 《Journal of Earth Science》 SCIE CAS CSCD 2024年第6期2013-2029,共17页
Brittleness is of great significance for evaluating the mechanical properties of the slope rock in reservoir area and revealing the brittle failure mechanism of the rocks.Although a series of definitions of the brittl... Brittleness is of great significance for evaluating the mechanical properties of the slope rock in reservoir area and revealing the brittle failure mechanism of the rocks.Although a series of definitions of the brittleness and evaluation methods of brittleness index have been proposed,there is still lack of a widely recognized and remarkable standards in these aspects due to the differences in diagenetic process,depositional environment and mineral composition.The previous methods to quantitively estimate the rock brittleness based on energy balance analysis are summarized,which neglect multiple influencing factors of the rock brittleness,such as the weight of pre-peak or post-peak mechanical behaviors on the prediction performance of the brittleness index.Based on the typical curves about stress and strain,the relationships between the brittle failure behaviors and the energy evolutions are comprehensively analyzed,then a new method for assessing the brittleness is proposed.Based on prepeak brittleness index to represent brittle property at pre-peak stage and post-peak brittleness index to determine brittle characteristic at post-peak stage,a new brittleness index is established by additive synthesis method in consideration of the weight of brittleness indexes before and after peak strength,and either of the two brittleness indexes can be punished or compensated by setting different parameter values.The results indicate that the proposed brittleness index can represent the brittle change laws for different rock types whenα≤0.5,β≥0.5.When evaluating the brittleness of the slope rock in Three Gorges Reservoir(TGR)area,the results show that the rock brittleness in the slope affects the stability of the slope.Therefore,the novel evaluation method can provide reliable results,and the proposed brittleness index considering the energy evolution can be applied to assess the brittle property in the reservoir bank project. 展开更多
关键词 ROCKS brittleness index complete stress-strain curve deformation and failure energy evolution slope stability engineering geology
原文传递
上一页 1 2 16 下一页 到第
使用帮助 返回顶部