The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces....The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces.The strong convergence result for our method is established under some standard assumptions without any requirement of the knowledge of the Lipschitz constant of the mapping.Several numerical experiments are provided to verify the advantages and efficiency of proposed algorithms.展开更多
针对非光滑非凸–强拟凹鞍点问题,本文利用Bregman距离建立了Bregman近端梯度上升下降算法。对Bregman近端梯度上升迭代算法中,得到内部最大化问题函数差值不等式,从而得到近端梯度上升迭代点之间的不等式关系。对于非凸非光滑问题,引...针对非光滑非凸–强拟凹鞍点问题,本文利用Bregman距离建立了Bregman近端梯度上升下降算法。对Bregman近端梯度上升迭代算法中,得到内部最大化问题函数差值不等式,从而得到近端梯度上升迭代点之间的不等式关系。对于非凸非光滑问题,引入扰动类梯度下降序列,得到算法的次收敛性,当目标函数为半代数时,得到算法的全局收敛性。For the nonsmooth nonconvex-strongly quasi-concave saddle point problems, this paper establishes the Bregman proximal gradient ascent-descent algorithm by using the Bregman distance. In the Bregman proximal gradient ascent iterative algorithm, the difference inequality of the internal maximization problem function is obtained, and thus the inequality relationship between the proxi-mal gradient ascent iterative points is derived. For nonconvex and nonsmooth problems, a perturbed gradient-like descent sequence is introduced to obtain the sub-convergence of the algorithm. When the objective function is semi-algebraic, the global convergence of the algorithm is obtained.展开更多
由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标...由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标方位估计问题转化为矩阵流形上两点间的几何距离问题,揭示了方位估计与黎曼空间矩阵流形的映射规律,从而得到了几何距离最小值处对应的角度即为目标入射角度的结论,并通过构建两个强鲁棒性的矩阵流形,完成了矩阵信息几何DOA估计理论模型的建立。通过模拟仿真与实测数据对所新方法进行了验证。验证结果表明:与现有的最小方差无失真响应算法和多信号分类算法相比,新方法在低信噪比环境下拥有更好的估计精度;新方法的应用具有一定的实际意义和应用前景,可以为海洋防御及民用领域中的水下目标方位估计等提供坚实的技术支持。展开更多
基金Supported by NSFC(No.12171062)the Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-JQX0004)+1 种基金the Chongqing Talent Support Program(No.cstc2024ycjh-bgzxm0121)Science and Technology Project of Chongqing Education Committee(No.KJZD-M202300503)。
文摘The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces.The strong convergence result for our method is established under some standard assumptions without any requirement of the knowledge of the Lipschitz constant of the mapping.Several numerical experiments are provided to verify the advantages and efficiency of proposed algorithms.
文摘针对非光滑非凸–强拟凹鞍点问题,本文利用Bregman距离建立了Bregman近端梯度上升下降算法。对Bregman近端梯度上升迭代算法中,得到内部最大化问题函数差值不等式,从而得到近端梯度上升迭代点之间的不等式关系。对于非凸非光滑问题,引入扰动类梯度下降序列,得到算法的次收敛性,当目标函数为半代数时,得到算法的全局收敛性。For the nonsmooth nonconvex-strongly quasi-concave saddle point problems, this paper establishes the Bregman proximal gradient ascent-descent algorithm by using the Bregman distance. In the Bregman proximal gradient ascent iterative algorithm, the difference inequality of the internal maximization problem function is obtained, and thus the inequality relationship between the proxi-mal gradient ascent iterative points is derived. For nonconvex and nonsmooth problems, a perturbed gradient-like descent sequence is introduced to obtain the sub-convergence of the algorithm. When the objective function is semi-algebraic, the global convergence of the algorithm is obtained.
文摘由于传统的欧式空间方法无法有效反映协方差矩阵之间的差异,而导致信息损失,为了解决这一问题,提出了一种基于詹森-布雷格曼洛格德特散度(Jensen-Bregman LogDet divergence)的阵列波达方向(Direction of Arrival,DOA)估计方法,将目标方位估计问题转化为矩阵流形上两点间的几何距离问题,揭示了方位估计与黎曼空间矩阵流形的映射规律,从而得到了几何距离最小值处对应的角度即为目标入射角度的结论,并通过构建两个强鲁棒性的矩阵流形,完成了矩阵信息几何DOA估计理论模型的建立。通过模拟仿真与实测数据对所新方法进行了验证。验证结果表明:与现有的最小方差无失真响应算法和多信号分类算法相比,新方法在低信噪比环境下拥有更好的估计精度;新方法的应用具有一定的实际意义和应用前景,可以为海洋防御及民用领域中的水下目标方位估计等提供坚实的技术支持。
基金Special Fund for Agro-scientific Research in the Public Interest,China(No.201203028)The"Twelfth Five-Year"National Science and technology support program,China(No.2012BAD35B02)