To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed,...To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed, based on the principle of bidirectional reflectance distribution function(BRDF), to obtain spectral reflection intensities of coatings at full spatial angles, and use polarization images to calculate the refractive index by the Fresnel equation. The index is then coupled into TorranceSparrow model to simulate the spectral scattering intensity to mutually verify the experimental results. The spectral scattering characteristics of standard camouflage patterns are then revealed and pinpoint the signature band and the angle of reflecting sensitivity.展开更多
双向反射分布函数(Bidirectional Reflectance Distribution Function,BRDF)描述地表反射的各向异性分布特征,是定量遥感研究的重要参数。本研究利用ASD Field Spec 4便携式地物光谱仪和多角度观测支架采集查干湖冰封期不同类型积雪和湖...双向反射分布函数(Bidirectional Reflectance Distribution Function,BRDF)描述地表反射的各向异性分布特征,是定量遥感研究的重要参数。本研究利用ASD Field Spec 4便携式地物光谱仪和多角度观测支架采集查干湖冰封期不同类型积雪和湖冰BRDF,并利用Savitzky-Golay滤波法处理光谱数据,基于地面观测数据分析黑冰、白冰、灰冰、蓝冰和雪的BRDF反射特性,同时探索气泡及杂质对冰雪BRDF反射光谱特性的影响。结果显示,湖冰和积雪表面反射率随天顶角的增加而增加,当方位角为0°和45°时,呈现出明显的各向异性。不同种类的湖冰光谱反射率具有共同的变化特征:当波长位于350~600 nm,湖冰反射率随波长的增大而增大,在600 nm附近反射率达到峰值;当波长位于600~1300 nm,反射率随波长增大而减小,直至完全被吸收。对比不同气泡大小的黑冰光谱特性发现,气泡主要影响350~1000 nm范围内的反射率,气泡的存在增加了黑冰反射率。本研究旨在为湖冰遥感反演算法提供实测数据和机理研究。展开更多
室外BRDF(Bidirectional reflectance distribution function)测量随着遥感的发展越来越重要。室外测量要求测量周期短、测量点多、光谱分辨率高。为了满足这一要求,设计了室外高光谱BRDF自动测量系统。系统主要由自动测量架和光谱仪...室外BRDF(Bidirectional reflectance distribution function)测量随着遥感的发展越来越重要。室外测量要求测量周期短、测量点多、光谱分辨率高。为了满足这一要求,设计了室外高光谱BRDF自动测量系统。系统主要由自动测量架和光谱仪器组成。测量架半径为2m,主要由天顶弧轨道、方位圆轨道、伺服电机、PLC组成。光谱仪器包括一台亮度计和一台照度计,亮度计测量反射亮度,被固定在测量架小车平台上,照度计测量入射照度。两台光谱仪器采用相同的平场凹面光栅分光、线阵列探测器探测。光谱测量范围为400~2500nm,光谱分辨率为3.5nm(400~1000nm)、12nm(1000~2500nm)。系统在工控机的控制下完成自动测量。在自动默认状态下测量周期大约为10min。展开更多
地表反照率直接影响地表辐射平衡,进而改变当地温度(2m气温,下同),然后还可能通过大气平流过程影响下游地区的温度。为揭示利用实时更新的地表反照率替换WRF(Weather Research and Forecasting)模式的静态地表反照率对中国大陆温度模拟...地表反照率直接影响地表辐射平衡,进而改变当地温度(2m气温,下同),然后还可能通过大气平流过程影响下游地区的温度。为揭示利用实时更新的地表反照率替换WRF(Weather Research and Forecasting)模式的静态地表反照率对中国大陆温度模拟结果的影响,本文进行了两组为期6年(2002-2007年)的连续积分试验:控制试验(CT试验)采用短波波段地表反照率,取自WRF模式推荐的地表参数数据集;敏感试验(MD试验)采用分波段的(可见光和近红外)地表反照率,取自MODIS BRDF/Albedo数据产品。试验结果表明,CT试验能够模拟中国温度的基本空间格局,但是模拟温度相对于观测温度有明显偏差,青藏高原南部的模拟温度偏低(负偏差),最大偏低幅度为1.03℃,出现在秋季,东部地区的模拟温度偏高(正偏差),最大偏高幅度达3.4℃,出现在春季;MD试验模拟结果的正、负偏差格局与CT试验基本相似,但是与CT试验相比,MD试验模拟的青藏高原南部温度的负偏差更大,最大为1.32℃,而模拟的东部地区温度的正偏差明显减小,最大为2.97℃,这说明MD试验比CT试验模拟的温度普遍偏低。在青藏高原,这主要归因于MD试验比CT试验的地表反照率大,使得地表净辐射少,地表感热少,致使温度偏低;在中国东部的黄淮海至江南丘陵区,这主要归因于MD试验中北方蒙古高原的地表反照率比CT试验的大,使得MD试验中该地区的地表净辐射少,地表感热少,温度低,然后通过南下冷平流过程致使位于其下游的黄淮海至江南丘陵区温度降低。展开更多
基金supported by the Jilin Province Science and Technology Development Plan Item (No.20240402068GH)。
文摘To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed, based on the principle of bidirectional reflectance distribution function(BRDF), to obtain spectral reflection intensities of coatings at full spatial angles, and use polarization images to calculate the refractive index by the Fresnel equation. The index is then coupled into TorranceSparrow model to simulate the spectral scattering intensity to mutually verify the experimental results. The spectral scattering characteristics of standard camouflage patterns are then revealed and pinpoint the signature band and the angle of reflecting sensitivity.
文摘室外BRDF(Bidirectional reflectance distribution function)测量随着遥感的发展越来越重要。室外测量要求测量周期短、测量点多、光谱分辨率高。为了满足这一要求,设计了室外高光谱BRDF自动测量系统。系统主要由自动测量架和光谱仪器组成。测量架半径为2m,主要由天顶弧轨道、方位圆轨道、伺服电机、PLC组成。光谱仪器包括一台亮度计和一台照度计,亮度计测量反射亮度,被固定在测量架小车平台上,照度计测量入射照度。两台光谱仪器采用相同的平场凹面光栅分光、线阵列探测器探测。光谱测量范围为400~2500nm,光谱分辨率为3.5nm(400~1000nm)、12nm(1000~2500nm)。系统在工控机的控制下完成自动测量。在自动默认状态下测量周期大约为10min。
文摘地表反照率直接影响地表辐射平衡,进而改变当地温度(2m气温,下同),然后还可能通过大气平流过程影响下游地区的温度。为揭示利用实时更新的地表反照率替换WRF(Weather Research and Forecasting)模式的静态地表反照率对中国大陆温度模拟结果的影响,本文进行了两组为期6年(2002-2007年)的连续积分试验:控制试验(CT试验)采用短波波段地表反照率,取自WRF模式推荐的地表参数数据集;敏感试验(MD试验)采用分波段的(可见光和近红外)地表反照率,取自MODIS BRDF/Albedo数据产品。试验结果表明,CT试验能够模拟中国温度的基本空间格局,但是模拟温度相对于观测温度有明显偏差,青藏高原南部的模拟温度偏低(负偏差),最大偏低幅度为1.03℃,出现在秋季,东部地区的模拟温度偏高(正偏差),最大偏高幅度达3.4℃,出现在春季;MD试验模拟结果的正、负偏差格局与CT试验基本相似,但是与CT试验相比,MD试验模拟的青藏高原南部温度的负偏差更大,最大为1.32℃,而模拟的东部地区温度的正偏差明显减小,最大为2.97℃,这说明MD试验比CT试验模拟的温度普遍偏低。在青藏高原,这主要归因于MD试验比CT试验的地表反照率大,使得地表净辐射少,地表感热少,致使温度偏低;在中国东部的黄淮海至江南丘陵区,这主要归因于MD试验中北方蒙古高原的地表反照率比CT试验的大,使得MD试验中该地区的地表净辐射少,地表感热少,温度低,然后通过南下冷平流过程致使位于其下游的黄淮海至江南丘陵区温度降低。