Coronavirus is a potentially fatal disease that normally occurs in mammals and birds.Generally,in humans,the virus spreads through aerial droplets of any type of fluid secreted from the body of an infected person.Coro...Coronavirus is a potentially fatal disease that normally occurs in mammals and birds.Generally,in humans,the virus spreads through aerial droplets of any type of fluid secreted from the body of an infected person.Coronavirus is a family of viruses that is more lethal than other unpremeditated viruses.In December 2019,a new variant,i.e.,a novel coronavirus(COVID-19)developed in Wuhan province,China.Since January 23,2020,the number of infected individuals has increased rapidly,affecting the health and economies of many countries,including Pakistan.The objective of this research is to provide a system to classify and categorize the COVID-19 outbreak in Pakistan based on the data collected every day from different regions of Pakistan.This research also compares the performance of machine learning classifiers(i.e.,Decision Tree(DT),Naive Bayes(NB),Support Vector Machine,and Logistic Regression)on the COVID-19 dataset collected in Pakistan.According to the experimental results,DT and NB classifiers outperformed the other classifiers.In addition,the classified data is categorized by implementing a Bayesian Regularization Artificial Neural Network(BRANN)classifier.The results demonstrate that the BRANN classifier outperforms state-of-the-art classifiers.展开更多
基金The authors are grateful to the Raytheon Chair for Systems Engineering for funding.
文摘Coronavirus is a potentially fatal disease that normally occurs in mammals and birds.Generally,in humans,the virus spreads through aerial droplets of any type of fluid secreted from the body of an infected person.Coronavirus is a family of viruses that is more lethal than other unpremeditated viruses.In December 2019,a new variant,i.e.,a novel coronavirus(COVID-19)developed in Wuhan province,China.Since January 23,2020,the number of infected individuals has increased rapidly,affecting the health and economies of many countries,including Pakistan.The objective of this research is to provide a system to classify and categorize the COVID-19 outbreak in Pakistan based on the data collected every day from different regions of Pakistan.This research also compares the performance of machine learning classifiers(i.e.,Decision Tree(DT),Naive Bayes(NB),Support Vector Machine,and Logistic Regression)on the COVID-19 dataset collected in Pakistan.According to the experimental results,DT and NB classifiers outperformed the other classifiers.In addition,the classified data is categorized by implementing a Bayesian Regularization Artificial Neural Network(BRANN)classifier.The results demonstrate that the BRANN classifier outperforms state-of-the-art classifiers.