期刊文献+
共找到1,424篇文章
< 1 2 72 >
每页显示 20 50 100
Optimal Planning of Multiple PV-DG in Radial Distribution Systems Using Loss Sensitivity Analysis and Genetic Algorithm
1
作者 A. Elkholy 《Journal of Power and Energy Engineering》 2025年第2期1-22,共22页
This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity fa... This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions. 展开更多
关键词 Photovoltaic Systems Distributed Generation Multiple Allocation and Sizing Power losses Radial Distribution System Genetic algorithm
在线阅读 下载PDF
An Optimization Method for Reducing Losses in Distribution Networks Based on Tabu Search Algorithm
2
作者 Jiaqian Zhao Xiufang Gu +1 位作者 Xiaoyu Wei Mingyu Bao 《Journal of Electronic Research and Application》 2025年第2期181-190,共10页
With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reductio... With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reduction measure,lack of economy,and practicality in existing research,this paper proposes an optimization method of distribution network loss reduction based on tabu search algorithm and optimizes the combination and parameter configuration of loss reduction measure.The optimization model is developed with the goal of maximizing comprehensive benefits,incorporating both economic and environmental factors,and accounting for investment costs,including the loss of power reduction.Additionally,the model ensures that constraint conditions such as power flow equations,voltage deviations,and line transmission capacities are satisfied.The solution is obtained through a tabu search algorithm,which is well-suited for solving nonlinear problems with multiple constraints.Combined with the example of 10kV25 node construction,the simulation results show that the method can significantly reduce the network loss on the basis of ensuring the economy and environmental protection of the system,which provides a theoretical basis for distribution network planning. 展开更多
关键词 Distribution network loss reduction measures ECONOMY Optimization model Tabu search algorithm
在线阅读 下载PDF
Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms
3
作者 Irbek Morgoev Roman Klyuev Angelika Morgoeva 《Computer Modeling in Engineering & Sciences》 2025年第5期1381-1399,共19页
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of... Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry. 展开更多
关键词 Non-technical losses smart grid machine learning electricity theft FRAUD ensemble algorithm hybrid method forecasting classification supervised learning
在线阅读 下载PDF
Using Audiometric Data to Weigh and Prioritize Factors that Affect Workers’ Hearing Loss through Support Vector Machine (SVM) Algorithm 被引量:3
4
作者 Hossein ElahiShirvan MohammadReza Ghotbi-Ravandi +1 位作者 Sajad Zare Mostafa Ghazizadeh Ahsaee 《Sound & Vibration》 EI 2020年第2期99-112,共14页
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric... Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss. 展开更多
关键词 Noise modeling hearing loss data mining support vector machine algorithm
暂未订购
Fuzzy-GA based algorithm for optimal placement and sizing of distribution static compensator (DSTATCOM) for loss reduction of distribution network considering reconfiguration 被引量:1
5
作者 Mohammad Mohammadi Mahyar Abasi A.Mohammadi Rozbahani 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期245-258,共14页
This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devic... This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system. 展开更多
关键词 distribution FACTS (DFACTS) distribution static compensator (DSTATCOM) network reconfiguration genetic algorithm fuzzy membership function power loss reduction
在线阅读 下载PDF
Distributed Generators Location and Capacity Effect on Voltage Profile Improvement and Power Losses Reduction Using Genetic Algorithm
6
作者 Mohamad Fawzy Kotb 《Journal of Energy and Power Engineering》 2012年第3期446-455,共10页
This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA(Genetic Optimization algorithm).It is proved that GA method is fast and e... This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA(Genetic Optimization algorithm).It is proved that GA method is fast and easy tool to enable the planners to select accurate and the optimum size of generators to improve the system voltage profile in addition to reduce the active and reactive power loss.GA fitness function is introduced including the active power losses,reactive power losses and the cumulative voltage deviation variables with selecting weight of each variable.GA fitness function is subjected to voltage constraints,active and reactive power losses constraints and DG size constraint. 展开更多
关键词 GA(genetic algorithm) DG(distributed generators) cumulative voltage deviation active and reactive power loss WEIGHT MATLAB load flow.
在线阅读 下载PDF
Rail Line Detection Algorithm Based on Improved CLRNet
7
作者 ZHOU Bowei XING Guanyu LIU Yanli 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期923-934,共12页
In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify ... In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify dangerous targets.Both the rail line and the lane are presented as thin line shapes in the image,but the rail scene is more complex,and the color of the rail line is more difficult to distinguish from the background.By comparison,there are already many deep learning-based lane detection algorithms,but there is a lack of public datasets and targeted deep learning detection algorithms for rail line detection.To address this,this paper constructs a rail image dataset RailwayLine and labels the rail line for the training and testing of models.This dataset contains rich rail images including single-rail,multi-rail,straight rail,curved rail,crossing rails,occlusion,blur,and different lighting conditions.To address the problem of the lack of deep learning-based rail line detection algorithms,we improve the CLRNet algorithm which has an excellent performance in lane detection,and propose the CLRNet-R algorithm for rail line detection.To address the problem of the rail line being thin and occupying fewer pixels in the image,making it difficult to distinguish from complex backgrounds,we introduce an attention mechanism to enhance global feature extraction ability and add a semantic segmentation head to enhance the features of the rail region by the binary probability of rail lines.To address the poor curve recognition performance and unsmooth output lines in the original CLRNet algorithm,we improve the weight allocation for line intersection-over-union calculation in the original framework and propose two loss functions based on local slopes to optimize the model’s local sampling point training constraints,improving the model’s fitting performance on curved rails and obtaining smooth and stable rail line detection results.Through experiments,this paper demonstrates that compared with other mainstream lane detection algorithms,the algorithm proposed in this paper has a better performance for rail line detection. 展开更多
关键词 rail line detection attention mechanism semantic segmentation loss function CLRNet algorithm
原文传递
基于Ranking Loss的多标签分类集成学习算法 被引量:1
8
作者 任志博 王莉莉 +2 位作者 付忠良 张丹普 杨燕霞 《计算机应用》 CSCD 北大核心 2013年第A01期40-42,68,共4页
针对目标可以属于多个类别的多标签分类问题,提出了一种基于Ranking Loss最小化的集成学习方法。算法基于Real AdaBoost算法的核心思想,从Ranking Loss定义出发,以Ranking Loss在样本空间最小化为目标,采取迭代的方法训练多个弱分类器,... 针对目标可以属于多个类别的多标签分类问题,提出了一种基于Ranking Loss最小化的集成学习方法。算法基于Real AdaBoost算法的核心思想,从Ranking Loss定义出发,以Ranking Loss在样本空间最小化为目标,采取迭代的方法训练多个弱分类器,并将这些弱分类器集成起来构成强分类器,强分类器的Ranking Loss随着弱分类器个数的增加而逐渐减少,并给出了算法流程。通过理论分析和实验数据对比验证了提出的多标签分类算法的有效性和稳定性。 展开更多
关键词 多标签分类 ADABOOST算法 Rankingloss 分类器组合 集成学习
在线阅读 下载PDF
融合GIoU和Focal loss的YOLOv3目标检测算法 被引量:29
9
作者 邹承明 薛榕刚 《计算机工程与应用》 CSCD 北大核心 2020年第24期214-222,共9页
YOLOv3目标检测算法检测速度快且精度较高,但存在对小目标检测能力不足、边界框定位不准确等问题。提出了一种基于YOLOv3改进的目标检测算法,该算法在YOLOv3的基础上,对网络中的残差块增加旁路连接,进一步进行特征重用,以提取更多的特... YOLOv3目标检测算法检测速度快且精度较高,但存在对小目标检测能力不足、边界框定位不准确等问题。提出了一种基于YOLOv3改进的目标检测算法,该算法在YOLOv3的基础上,对网络中的残差块增加旁路连接,进一步进行特征重用,以提取更多的特征信息。同时,采用GIoUloss作为边界框的损失,使网络朝着预测框与真实框重叠度较高的方向去优化。在损失函数中加入Focal loss,减小正负样本不平衡带来的误差。在PASCAL VOC和COCO数据集上的实验结果表明,该算法能够在不影响YOLOv3算法实时性的前提下,提高目标检测的mAP。该算法在PASCAL VOC 2007测试集上达到83.7mAP(IoU=0.5),在COCO测试集上比YOLOv3算法提升2.27mAP(IoU[0.5,0.95])。 展开更多
关键词 YOLOv3算法 目标检测 GIou loss Focal loss
在线阅读 下载PDF
New Algorithm for Real-Time CAC Decisions
10
作者 张鹰 陶然 +1 位作者 周思永 王越 《Journal of Beijing Institute of Technology》 EI CAS 1998年第4期366-372,共7页
Aim To Put forward an improve algorithm for real-time connection admission control (CAC) decision. Methods converted equations of Cell loss ratio (CLR) upper bound were derived based on typical approaches to reduce co... Aim To Put forward an improve algorithm for real-time connection admission control (CAC) decision. Methods converted equations of Cell loss ratio (CLR) upper bound were derived based on typical approaches to reduce computing load. Moreover, the effects of usage parameter control (UPC) policing and bandwidth allocation functions were combined to deduce improver equations. computing load and admission region of the new algorithm were analyzed, while numerical examples and comparisons with classical non-parametic method were also included. Results Computing burden was reduced. More accurate estimation of CLR was obtained. The admission region of new algorithm was larger than typical non-parametric approach and was variable according to the burst length.Conclusion The calculation burden of new algorithm for CLR estimation is lighter than classical non-parametric approach. In addition to that, just as many information as what we can get in connection setup process are used for CAC decision. So it is not only a practicable but also an effective method that can be used in real-time processing. 展开更多
关键词 ATM networks CAC algorithm congestion and block control cell loss ratio
在线阅读 下载PDF
A New Software for GIS Image Pixel Topographic Fac-tors in Remote Sensing Monitoring of Soil Losses 被引量:4
11
作者 TANGWAN-LONG BUZHAO-HONG 《Pedosphere》 SCIE CAS CSCD 1995年第1期67-74,共8页
Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This ... Based on the new algorithm for GIS image pixel topographic factors in remote sensing monitoring ofsoil losses, a software was developed for microcomputer to carry out computation at a medium river basin(county). This paper lays its emphasis on algorithmic skills and programming techniques as well as applicationof the software. 展开更多
关键词 algorithmic skills programming techniques remote sensing monitoring SOFTWARE soil losses
在线阅读 下载PDF
A High Precision Comprehensive Evaluation Method for Flood Disaster Loss Based on Improved Genetic Programming 被引量:2
12
作者 ZHOU Yuliang LU Guihua +2 位作者 JIN Juliang TONG Fang ZHOU Ping 《Journal of Ocean University of China》 SCIE CAS 2006年第4期322-326,共5页
Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the... Precise comprehensive evaluation of flood disaster loss is significant for the prevention and mitigation of flood disasters. Here, one of the difficulties involved is how to establish a model capable of describing the complex relation between the input and output data of the system of flood disaster loss. Genetic programming (GP) solves problems by using ideas from genetic algorithm and generates computer programs automatically. In this study a new method named the evaluation of the grade of flood disaster loss (EGFD) on the basis of improved genetic programming (IGP) is presented (IGP-EGFD). The flood disaster area and the direct economic loss are taken as the evaluation indexes of flood disaster loss. Obviously that the larger the evaluation index value, the larger the corresponding value of the grade of flood disaster loss is. Consequently the IGP code is designed to make the value of the grade of flood disaster be an increasing function of the index value. The result of the application of the IGP-EGFD model to Henan Province shows that a good function expression can be obtained within a bigger searched function space; and the model is of high precision and considerable practical significance. Thus, IGP-EGFD can be widely used in automatic modeling and other evaluation systems. 展开更多
关键词 automatic modeling evaluation of flood disaster loss genetic algorithm genetic programming
在线阅读 下载PDF
Assessing the Forecasting of Comprehensive Loss Incurred by Typhoons:A Combined PCA and BP Neural Network Model 被引量:2
13
作者 Shuai Yuan Guizhi Wang +1 位作者 Jibo Chen Wei Guo 《Journal on Artificial Intelligence》 2019年第2期69-88,共20页
This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint mo... This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint model to investigate the damages caused by typhoons for a coastal province,Fujian Province,China in 2005-2015(latest).First,the PCA is applied to analyze comprehensively the relationship between hazard factors,hazard bearing factors and disaster factors.Then five integrated indices,overall disaster level,typhoon intensity,damaged condition of houses,medical rescue and self-rescue capability,are extracted through the PCA;Finally,the BP neural network model,which takes the principal component scores as input and is optimized by the LM algorithm,is implemented to forecast the comprehensive loss of typhoons.It is estimated that an average annual loss of 138.514 billion RMB occurred for 2005-2015,with a maximum loss of 215.582 in 2006 and a decreasing trend since 2010 though the typhoon intensity increases.The model was validated using three typhoon events and it is found that the error is less than 1%.These results provide information for the government to increase medical institutions and medical workers and for the communities to promote residents’self-rescue capability. 展开更多
关键词 TYPHOON PCA BP neural network model comprehensive loss LM algorithm.
在线阅读 下载PDF
A method for power suppliers’optimal cooperative bidding strategies considering network losses 被引量:2
14
作者 Guanghui Sun Xiaowei Wang +3 位作者 Libo Yang Bin Ma Lei He Rongquan Zhang 《Global Energy Interconnection》 2020年第4期335-345,共11页
The bidding strategies of power suppliers to maximize their interests is of great importance.The proposed bilevel optimization model with coalitions of power suppliers takes restraint factors into consideration,such a... The bidding strategies of power suppliers to maximize their interests is of great importance.The proposed bilevel optimization model with coalitions of power suppliers takes restraint factors into consideration,such as operating cost reduction,potential cooperation,other competitors’bidding behavior,and network constraints.The upper model describes the coalition relationship between suppliers,and the lower model represents the independent system operator’s optimization without network loss(WNL)or considering network loss(CNL).Then,a novel algorithm,the evolutionary game theory algorithm(EGA)based on a hybrid particle swarm optimization and improved firefly algorithm(HPSOIFA),is proposed to solve the bi-level optimization model.The bidding behavior of the power suppliers in equilibrium with a dynamic power market is encoded as one species,with the EGA automatically predicting a plausible adaptation process for the others.Individual behavior changes are employed by the HPSOIFA to enhance the ability of global exploration and local exploitation.A novel improved firefly algorithm(IFA)is combined with a chaotic sequence theory to escape from the local optimum.In addition,the Shapley value is applied to the profit distribution of power suppliers’cooperation.The simulation,adopting the standard IEEE-30 bus system,demonstrates the effectiveness of the proposed method for solving the bi-level optimization problem. 展开更多
关键词 Bidding strategy COOPERATION Network loss Improved firefly algorithm Hybrid optimization
在线阅读 下载PDF
Novel Rotors with Low Eddy Current Loss for High Speed Permanent Magnet Machines 被引量:5
15
作者 Xin Cheng Wei Xu +2 位作者 Guanghui Du Guohui Zeng Jianguo Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第2期187-194,共8页
Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resultin... Due to the large rotor eddy current loss and low thermal conductivity of carbon fiber sleeve,the high temperature usually occurs in high speed permanent magnet machines(HSPMMs)at the rated operation condition,resulting in irreversible demagnetization of the permanent magnet(PM).To obtain low rotor temperature,two novel rotor structures with low rotor eddy current loss are proposed in this paper.With the output torque and air gap flux density unchanged,the performance of HSPMMs with the two proposed rotor structures are analyzed based on finite element algorithm(FEA),including eddy current loss and temperature.Finally,the appropriate parameters of the proposed rotor structures are selected,and the electromagnetic(EM)performance,rotor stress and temperature are compared with those of the conventional rotor structure.Index Terms-Eddy current loss,finite element algorithm(FEA),electromagnetic(EM)performance,high speed permanent magnet machines(HSPMMs). 展开更多
关键词 Eddy current loss finite element algorithm(FEA) electromagnetic(EM)performance high speed permanent magnet machines(HSPMMs).
在线阅读 下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation 被引量:1
16
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
在线阅读 下载PDF
Ship Weather Routing Based on Hybrid Genetic Algorithm Under Complicated Sea Conditions
17
作者 ZHOU Peng ZHOU Zheng +1 位作者 WANG Yan WANG Hongbo 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期28-42,共15页
Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key ro... Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key role in modern navigation technology,ship weather routing is the research focus of several scholars in this field.This study presents a hybrid genetic algorithm for the design of an optimal ship route for safe transoceanic navigation under complicated sea conditions.On the basis of the basic genetic algorithm,simulated annealing algorithm is introduced to enhance its local search ability and avoid premature convergence,with the ship’s voyage time and fuel consumption as optimization goals.Then,a mathematical model of ship weather routing is developed based on the grid system.A measure of fitness calibration is proposed,which can change the selection pressure of the algorithm as the population evolves.In addition,a hybrid crossover operator is proposed to enhance the ability to find the optimal solution and accelerate the convergence speed of the algorithm.Finally,a multi-population technique is applied to improve the robustness of the algorithm using different evolutionary strategies. 展开更多
关键词 genetic algorithm simulated annealing algorithm weather routing ship speed loss
在线阅读 下载PDF
Unbalance Level Regulating Algorithm in Power Distribution Networks
18
作者 Eugene Alekseevich Shutov Tatyana Evgenievna Turukina Ilya Igorevich Elfimov 《Energy and Power Engineering》 2018年第2期65-76,共12页
The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV volta... The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%. 展开更多
关键词 UNBALANCE SUPPLEMENTARY POWER losses Load Switching algorithm Electric POWER Quality DISTRIBUTING Networks Function Block Balancing System Forecasting MICROCONTROLLER
暂未订购
Optimization of Losses Joule in the Congolese Electrical Network Integrated with the Energy Pool of Central Africa in the PEAC Acronym
19
作者 Mathurin Gogom Courad Onesime Tsahat Oboulhas +2 位作者 Nianga Apila Anedi Oko Ganongo Désiré Lilonga-Boyenga 《Energy and Power Engineering》 2022年第1期13-34,共22页
Joule losses in the power grids are a factor in the degradation of power grid equipment (lines and transformers), but also a shortfall for power companies, which must maximize their revenues. This is why in this artic... Joule losses in the power grids are a factor in the degradation of power grid equipment (lines and transformers), but also a shortfall for power companies, which must maximize their revenues. This is why in this article we present a study on the optimization of joule losses in a meshed electricity network interconnected to a very high voltage power line crossing Congolese territory for nearly one thousand five hundred (1500) kilometers. The value of interconnections no longer needs to be demonstrated in view of these technical, economic and social advantages. The object of this study is to assess the optimal node where the interconnection can be achieved which would cause fewer joule losses in the networks to be interconnected on this line. Indeed, it can have several possible nodes where the interconnection can be carried out, so it is necessary to simulate each configuration in order to evaluate the losses using the hybrid method including the genetic algorithm to provide different configurations and the Newton Raphson algorithm. Advanced integrating FACTS devices in this case STATCOM to perform load flow. The results are interesting because by injecting electrical energy to the network or to the line to the same selected, the joule losses are within the standards provided by the International Electrotechnical Commission. 展开更多
关键词 INTERCONNECTION Joule losses Configuration Genetic algorithm Newton Raphson algorithm FACTS and Load Flow
在线阅读 下载PDF
Self Recovery of Localization Loss for Indoor Mobile Robot
20
作者 Lin Jiang Han Wang +3 位作者 Bin Lei Jianyang Zhu Huaiguang Liu Hui Zhao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第2期46-57,共12页
In order to solve the problem of localization loss that an autonomous mobile robot may encounter in indoor environment,an improved Monte Carlo localization algorithm is proposed in this paper.The algorithm can identif... In order to solve the problem of localization loss that an autonomous mobile robot may encounter in indoor environment,an improved Monte Carlo localization algorithm is proposed in this paper.The algorithm can identify the state of the robot by real time monitoring of the mean weight changes of the particles and introduce more high weight particles through the divergent sampling function when the robot is in the state of localization loss.The observation model will make the particle set slowly approach to the real position of the robot and the new particles are then sampled to reach the position.The loss self recovery experiments of different algorithms under different experimental scenarios are presented in this paper. 展开更多
关键词 INDOOR mobile robot SELF RECOVERY LOCALIZATION loss improved MONTE Carlo LOCALIZATION algorithm
在线阅读 下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部