期刊文献+
共找到1,405篇文章
< 1 2 71 >
每页显示 20 50 100
Optimal Planning of Multiple PV-DG in Radial Distribution Systems Using Loss Sensitivity Analysis and Genetic Algorithm
1
作者 A. Elkholy 《Journal of Power and Energy Engineering》 2025年第2期1-22,共22页
This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity fa... This paper introduces an optimized planning approach for integrating photovoltaic as distributed generation (PV-DG) into the radial distribution power systems, utilizing exhaustive load flow (ELF), loss sensitivity factor (LSF), genetic algorithms (GA) methods, and numerical method based on LSF. The methodology aims to determine the optimal allocation and sizing of multiple PV-DG to minimize power loss through time series power flow analysis. An approach utilizing continuous sensitivity analysis is developed and inherently leverages power flow and loss equations to compute LSF of all buses in the system towards employing a dynamic PV-DG model for more accurate results. The algorithm uses a numerical grid search method to optimize PV-DG placement in a power distribution system, focusing on minimizing system losses. It combines iterative analysis, sensitivity assessment, and comprehensive visualization to identify and present the optimal PV-DG configurations. The present-ed algorithms are verified through co-simulation framework combining MATLAB and OpenDSS to carry out analysis for 12-bus radial distribution test system. The proposed numerical method is compared with other algorithms, such as ELF, LSF methods, and Genetic Algorithms (GA). Results show that the proposed numerical method performs well in comparison with LSF and ELF solutions. 展开更多
关键词 Photovoltaic Systems Distributed Generation Multiple Allocation and Sizing Power losses Radial Distribution System Genetic algorithm
在线阅读 下载PDF
An Optimization Method for Reducing Losses in Distribution Networks Based on Tabu Search Algorithm
2
作者 Jiaqian Zhao Xiufang Gu +1 位作者 Xiaoyu Wei Mingyu Bao 《Journal of Electronic Research and Application》 2025年第2期181-190,共10页
With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reductio... With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reduction measure,lack of economy,and practicality in existing research,this paper proposes an optimization method of distribution network loss reduction based on tabu search algorithm and optimizes the combination and parameter configuration of loss reduction measure.The optimization model is developed with the goal of maximizing comprehensive benefits,incorporating both economic and environmental factors,and accounting for investment costs,including the loss of power reduction.Additionally,the model ensures that constraint conditions such as power flow equations,voltage deviations,and line transmission capacities are satisfied.The solution is obtained through a tabu search algorithm,which is well-suited for solving nonlinear problems with multiple constraints.Combined with the example of 10kV25 node construction,the simulation results show that the method can significantly reduce the network loss on the basis of ensuring the economy and environmental protection of the system,which provides a theoretical basis for distribution network planning. 展开更多
关键词 Distribution network loss reduction measures ECONOMY Optimization model Tabu search algorithm
在线阅读 下载PDF
Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms
3
作者 Irbek Morgoev Roman Klyuev Angelika Morgoeva 《Computer Modeling in Engineering & Sciences》 2025年第5期1381-1399,共19页
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of... Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry. 展开更多
关键词 Non-technical losses smart grid machine learning electricity theft FRAUD ensemble algorithm hybrid method forecasting classification supervised learning
在线阅读 下载PDF
Rail Line Detection Algorithm Based on Improved CLRNet
4
作者 ZHOU Bowei XING Guanyu LIU Yanli 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期923-934,共12页
In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify ... In smart driving for rail transit,a reliable obstacle detection system is an important guarantee for the safety of trains.Therein,the detection of the rail area directly affects the accuracy of the system to identify dangerous targets.Both the rail line and the lane are presented as thin line shapes in the image,but the rail scene is more complex,and the color of the rail line is more difficult to distinguish from the background.By comparison,there are already many deep learning-based lane detection algorithms,but there is a lack of public datasets and targeted deep learning detection algorithms for rail line detection.To address this,this paper constructs a rail image dataset RailwayLine and labels the rail line for the training and testing of models.This dataset contains rich rail images including single-rail,multi-rail,straight rail,curved rail,crossing rails,occlusion,blur,and different lighting conditions.To address the problem of the lack of deep learning-based rail line detection algorithms,we improve the CLRNet algorithm which has an excellent performance in lane detection,and propose the CLRNet-R algorithm for rail line detection.To address the problem of the rail line being thin and occupying fewer pixels in the image,making it difficult to distinguish from complex backgrounds,we introduce an attention mechanism to enhance global feature extraction ability and add a semantic segmentation head to enhance the features of the rail region by the binary probability of rail lines.To address the poor curve recognition performance and unsmooth output lines in the original CLRNet algorithm,we improve the weight allocation for line intersection-over-union calculation in the original framework and propose two loss functions based on local slopes to optimize the model’s local sampling point training constraints,improving the model’s fitting performance on curved rails and obtaining smooth and stable rail line detection results.Through experiments,this paper demonstrates that compared with other mainstream lane detection algorithms,the algorithm proposed in this paper has a better performance for rail line detection. 展开更多
关键词 rail line detection attention mechanism semantic segmentation loss function CLRNet algorithm
原文传递
Using Audiometric Data to Weigh and Prioritize Factors that Affect Workers’ Hearing Loss through Support Vector Machine (SVM) Algorithm 被引量:3
5
作者 Hossein ElahiShirvan MohammadReza Ghotbi-Ravandi +1 位作者 Sajad Zare Mostafa Ghazizadeh Ahsaee 《Sound & Vibration》 EI 2020年第2期99-112,共14页
Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric... Workers’exposure to excessive noise is a big universal work-related challenges.One of the major consequences of exposure to noise is permanent or transient hearing loss.The current study sought to utilize audiometric data to weigh and prioritize the factors affecting workers’hearing loss based using the Support Vector Machine(SVM)algorithm.This cross sectional-descriptive study was conducted in 2017 in a mining industry in southeast Iran.The participating workers(n=150)were divided into three groups of 50 based on the sound pressure level to which they were exposed(two experimental groups and one control group).Audiometric tests were carried out for all members of each group.The study generally entailed the following steps:(1)selecting predicting variables to weigh and prioritize factors affecting hearing loss;(2)conducting audiometric tests and assessing permanent hearing loss in each ear and then evaluating total hearing loss;(3)categorizing different types of hearing loss;(4)weighing and prioritizing factors that affect hearing loss based on the SVM algorithm;and(5)assessing the error rate and accuracy of the models.The collected data were fed into SPSS 18,followed by conducting linear regression and paired samples t-test.It was revealed that,in the first model(SPL<70 dBA),the frequency of 8 KHz had the greatest impact(with a weight of 33%),while noise had the smallest influence(with a weight of 5%).The accuracy of this model was 100%.In the second model(70<SPL<80 dBA),the frequency of 4 KHz had the most profound effect(with a weight of 21%),whereas the frequency of 250 Hz had the lowest impact(with a weight of 6%).The accuracy of this model was 100%too.In the third model(SPL>85 dBA),the frequency of 4 KHz had the highest impact(with a weight of 22%),while the frequency of 250 Hz had the smallest influence(with a weight of 3%).The accuracy of this model was 100%too.In the fourth model,the frequency of 4 KHz had the greatest effect(with a weight of 24%),while the frequency of 500 Hz had the smallest effect(with a weight of 4%).The accuracy of this model was found to be 94%.According to the modeling conducted using the SVM algorithm,the frequency of 4 KHz has the most profound effect on predicting changes in hearing loss.Given the high accuracy of the obtained model,this algorithm is an appropriate and powerful tool to predict and model hearing loss. 展开更多
关键词 Noise modeling hearing loss data mining support vector machine algorithm
暂未订购
Fuzzy-GA based algorithm for optimal placement and sizing of distribution static compensator (DSTATCOM) for loss reduction of distribution network considering reconfiguration 被引量:1
6
作者 Mohammad Mohammadi Mahyar Abasi A.Mohammadi Rozbahani 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期245-258,共14页
This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devic... This work presents a fuzzy based methodology for distribution system feeder reconfiguration considering DSTATCOM with an objective of minimizing real power loss and operating cost. Installation costs of DSTATCOM devices and the cost of system operation, namely, energy loss cost due to both reconfiguration and DSTATCOM placement, are combined to form the objective function to be minimized. The distribution system tie switches, DSTATCOM location and size have been optimally determined to obtain an appropriate operational condition. In the proposed approach, the fuzzy membership function of loss sensitivity is used for the selection of weak nodes in the power system for the placement of DSTATCOM and the optimal parameter settings of the DFACTS device along with optimal selection of tie switches in reconfiguration process are governed by genetic algorithm(GA). Simulation results on IEEE 33-bus and IEEE 69-bus test systems concluded that the combinatorial method using DSTATCOM and reconfiguration is preferable to reduce power losses to 34.44% for 33-bus system and to 45.43% for 69-bus system. 展开更多
关键词 distribution FACTS (DFACTS) distribution static compensator (DSTATCOM) network reconfiguration genetic algorithm fuzzy membership function power loss reduction
在线阅读 下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation 被引量:1
7
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
在线阅读 下载PDF
Distributed Generators Location and Capacity Effect on Voltage Profile Improvement and Power Losses Reduction Using Genetic Algorithm
8
作者 Mohamad Fawzy Kotb 《Journal of Energy and Power Engineering》 2012年第3期446-455,共10页
This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast a... This paper presents a powerful approach to find the optimal size and location of distributed generation units in a distribution system using GA (Genetic Optimization algorithm). It is proved that GA method is fast and easy tool to enable the planners to select accurate and the optimum size of generators to improve the system voltage profile in addition to reduce the active and reactive power loss. GA fitness function is introduced including the active power losses, reactive power losses and the cumulative voltage deviation variables with selecting weight of each variable. GA fitness function is subjected to voltage constraints, active and reactive power losses constraints and DG size constraint. 展开更多
关键词 GA (genetic algorithm DG (distributed generators) cumulative voltage deviation active and reactive power loss WEIGHT MATLAB load flow.
在线阅读 下载PDF
Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather
9
作者 Hanpeng Kou Tianlong Bu +2 位作者 Leer Mao Yihong Jiao Chunming Liu 《Energy Engineering》 EI 2024年第4期1027-1048,共22页
In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is... In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network. 展开更多
关键词 Decentralised wind power network loss correction siting and capacity determination reactive voltage control two-stage model manta ray foraging optimisation algorithm
在线阅读 下载PDF
小样本下基于改进麻雀算法优化卷积神经网络的飞轮储能系统损耗 被引量:4
10
作者 魏乐 李承霖 +1 位作者 房方 刘渝斌 《电网技术》 北大核心 2025年第1期366-372,I0113-I0115,共10页
飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵... 飞轮储能系统具有待机损耗,不适合长期储能。针对飞轮损耗这一经济指标,基于飞轮储能系统运行的小样本数据,提出了一种结合Logistic混沌麻雀优化算法和卷积神经网络的飞轮损耗计算模型。首先,分析了飞轮损耗产生的原因;接下来对宁夏灵武电厂的飞轮运行数据进行预处理,并使用对抗生成网络进行小样本扩充;然后基于卷积神经网络建立损耗模型,使用改进的麻雀算法对模型超参数进行优化,并通过对比验证了该模型的优越性;最后通过仿真实验证明了该模型能够优化飞轮储能系统的出力,降低飞轮损耗。 展开更多
关键词 飞轮储能系统损耗 小样本学习 卷积神经网络 麻雀搜索算法 LOGISTIC混沌映射
原文传递
海洋环境无线电能系统的参数设计及优化方法 被引量:1
11
作者 张克涵 李鑫阳 +3 位作者 代凡 冯佳明 闫争超 毛昭勇 《电源学报》 北大核心 2025年第2期188-195,共8页
针对涡流损耗问题,提出海水中无线电能传输系统参数的设计优化方法,能使系统电能传输效率最优。首先,在海水中通电线圈电磁场分析的基础上,利用涡流损耗等效阻抗,得到海洋环境无线电能传输系统的等效互感模型。其次,在初、次级侧线圈位... 针对涡流损耗问题,提出海水中无线电能传输系统参数的设计优化方法,能使系统电能传输效率最优。首先,在海水中通电线圈电磁场分析的基础上,利用涡流损耗等效阻抗,得到海洋环境无线电能传输系统的等效互感模型。其次,在初、次级侧线圈位置固定时,建立涡流损耗等效阻抗与系统工作频率及线圈匝数的关系表达式,并利用传输系统两侧线圈验证了涡流损耗等效阻抗计算方法的可行性。最后,以海水中LCC/S型无线电能传输系统的能量模型为基础,采用粒子群优化算法进行最大传输效率寻优。利用优化参数,搭建实验测试系统,结果显示,在模拟海洋环境中,当传输功率为1 kW时实验系统整体效率可达84%。 展开更多
关键词 海洋环境 磁耦合谐振 涡流损耗 涡流损耗等效阻抗 粒子群优化算法
在线阅读 下载PDF
基于改进近端策略优化算法的柔性作业车间调度 被引量:2
12
作者 王艳红 付威通 +2 位作者 张俊 谭园园 田中大 《控制与决策》 北大核心 2025年第6期1883-1891,共9页
柔性作业车间调度是经典且复杂的组合优化问题,对于离散制造系统的生产优化具有重要的理论和实际意义.基于多指针图网络框架和近端策略优化算法设计一种求解柔性作业车间调度问题的深度强化学习算法.首先,将“工序-机器”分配调度过程... 柔性作业车间调度是经典且复杂的组合优化问题,对于离散制造系统的生产优化具有重要的理论和实际意义.基于多指针图网络框架和近端策略优化算法设计一种求解柔性作业车间调度问题的深度强化学习算法.首先,将“工序-机器”分配调度过程表征成由选择工序和分配机器两类动作构成的马尔可夫决策过程;其次,通过解耦策略解除动作之间的耦合关系,并设计新的损失函数和贪婪采样策略以提高算法的验证推理能力;在此基础上扩充状态空间,使评估网络能够更全面地感知与评估,从而进一步提升算法的学习和决策能力.在随机生成算例及基准算例上进行仿真和对比分析,验证算法的良好性能及泛化能力. 展开更多
关键词 柔性作业车间调度 近端策略优化算法 双动作耦合网络 损失函数优化 贪婪采样 深度强化学习
原文传递
基于混合模型的多类型机场航班过站时间预测 被引量:1
13
作者 李国 王伟倩 曹卫东 《计算机工程与设计》 北大核心 2025年第2期633-640,F0003,共9页
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。... 为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。 展开更多
关键词 多类型机场 航班过站时间预测 客流量差异 天气差异 混合轻量级梯度提升机算法模型 自适应鲁棒损失函数 离群值 麻雀搜索算法
在线阅读 下载PDF
基于缺货延时双重损失的应急物资配送路径选择研究
14
作者 苏兵 陈相文 +5 位作者 张萌 姬浩 孙璐璐 徐阳 郭清娥 Lin Guohui 《中国管理科学》 北大核心 2025年第8期209-217,共9页
针对带时间窗的紧缺应急物资配送路径选择问题,综合考虑每个需求点的需求量和配送时间要求,提出需求点最大缺货延时双重损失定义,并以单个需求点最大缺货延时双重损失费用最小为目标,建立应急物资配送路径选择模型。对于配送车辆充足的... 针对带时间窗的紧缺应急物资配送路径选择问题,综合考虑每个需求点的需求量和配送时间要求,提出需求点最大缺货延时双重损失定义,并以单个需求点最大缺货延时双重损失费用最小为目标,建立应急物资配送路径选择模型。对于配送车辆充足的情形,设计时间复杂性为O(n^(3))的精确算法A*进行求解,其中n为需求点数;对于配送车辆不足的情形,设计时间复杂性为O(Ln^(2))的近似算法GA^(*)进行求解,其中L和n分别为车辆数和需求点数,并分析算法GA^(*)的近似比。最后结合实例进行分析,验证模型及算法的有效性。 展开更多
关键词 应急物资紧缺 配送时间窗 路径选择问题 缺货延时双重损失 近似算法
原文传递
基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法
15
作者 徐辉 张顺香 《传感技术学报》 北大核心 2025年第9期1698-1703,共6页
无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群... 无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群算法将定位误差最小问题转化为粒子的全局寻优问题,得到的最优粒子位置即为丢包节点位置;基于邻域搜索策略缩小粒子搜索空间,提高粒子群算法全局寻优能力,实现无线传感网络丢包节点定位。仿真结果表明,该方法的丢包节点定位误报率平均值为0.45%,15个丢包节点的定位中仅有1个节点的定位结果与真实坐标存在较小偏差,邻域搜索策略应用后在第20次迭代后适应度函数值迅速降低至0.2,保证了无线传感网络通信质量。 展开更多
关键词 无线传感网络 丢包节点定位 邻域搜索 粒子群算法 DV-HOP算法
在线阅读 下载PDF
铁路冷链联运集散中心作业流程优化设计
16
作者 张光远 李亚凌 +2 位作者 刘昱希 张贺 鲁工圆 《铁道运输与经济》 北大核心 2025年第9期1-14,共14页
针对铁路冷链联运集散中心在传统调度算法下存在的资源分配不合理、设备空载率高、路径冲突等典型问题,提出基于优化调度算法而设计的作业流程优化方案。通过分析传统调度算法下铁路冷链联运集散中心的核心作业流程,设计融合动-静态优... 针对铁路冷链联运集散中心在传统调度算法下存在的资源分配不合理、设备空载率高、路径冲突等典型问题,提出基于优化调度算法而设计的作业流程优化方案。通过分析传统调度算法下铁路冷链联运集散中心的核心作业流程,设计融合动-静态优先级评估、资源预分配机制以及最短路径规划的新型作业流程方案,依托仿真平台构建涵盖列车、集装箱、托盘等8类智能体的作业流程协同仿真模型,选择货物处理能力、损耗率等指标开展对比分析实验。实验表明:优化调度算法下的作业流程方案使得托盘和冷藏集装箱处理效率分别提升40.2%和23.7%,货物损耗率降低2.6个百分点,验证了该算法在规范作业流程、提升资源利用率方面的有效性,为铁路冷链联运集散中心的实际运营提供了有效建议。 展开更多
关键词 铁路冷链 调度算法 作业流程 仿真分析 损耗率
在线阅读 下载PDF
基于改进YOLOv5s的烟丝制丝生产线小目标杂物检测方法
17
作者 郑银环 陈恩杰 +1 位作者 吴飞 张帅彬 《合肥工业大学学报(自然科学版)》 北大核心 2025年第9期1183-1191,共9页
文章提出一种基于改进YOLOv5s的小目标检测算法,以YOLOv5s算法为基础模型,首先将Focal Loss和EIoU Loss引入模型优化原有的BCE Loss和CIoU Loss,加快模型的收敛速度;其次添加一个目标检测头,提高对小目标杂物的检测精度;最后对比分析不... 文章提出一种基于改进YOLOv5s的小目标检测算法,以YOLOv5s算法为基础模型,首先将Focal Loss和EIoU Loss引入模型优化原有的BCE Loss和CIoU Loss,加快模型的收敛速度;其次添加一个目标检测头,提高对小目标杂物的检测精度;最后对比分析不同类型注意力模块对模型的影响,并将坐标注意力引入模型颈部,加强模型对目标关键特征的提取,提高模型的学习能力。基于自制的杂物数据集对模型进行训练,实验结果表明,相较YOLOv5s算法,改进后的模型在测试集上的精确率、召回率、平均精度均值(mean average precision,mAP)值分别提高4.9%、5.5%、7.3%,识别效果更好,满足实际生产中精确性和实时性要求。 展开更多
关键词 小目标检测 YOLOv5s算法 注意力机制 检测头 损失函数改进
在线阅读 下载PDF
考虑分布电容的高频变压器多目标优化设计
18
作者 赵志刚 苏楠 +1 位作者 陈天缘 王凯 《电力系统及其自动化学报》 北大核心 2025年第6期81-91,共11页
高频变压器分布电容会影响电力电子器件的工作环境,进行高频变压器优化设计时,需对高频变压器分布电容进行准确评估和控制。针对分布电容评估问题,首先根据圆柱型电容器电容计算公式、平板电容器电容计算公式对相邻圆导线间电容和带隔... 高频变压器分布电容会影响电力电子器件的工作环境,进行高频变压器优化设计时,需对高频变压器分布电容进行准确评估和控制。针对分布电容评估问题,首先根据圆柱型电容器电容计算公式、平板电容器电容计算公式对相邻圆导线间电容和带隔离层圆导线间电容进行计算,并结合不同绕组排布下的电场分布求出高频变压器绝缘区域所储存的总电场能量,然后给出利兹线等效为圆导线的等效方案和在不同绕组匝数、层数以及不同层间绝缘厚度情况下的绕组长度计算方法,最终提出可以准确计算高频变压器分布电容的解析方法,并用实验和仿真验证分布电容计算方法的准确性。最后,使用二代非支配排序遗传算法建立高频变压器优化模型,根据优化模型设计一台效率为99.39%的7 kW/100 kHz高频变压器样机,使用优化算法有效抑制了分布电容。 展开更多
关键词 高频变压器 磁芯损耗 绕组损耗 漏感 分布电容 多目标优化算法
在线阅读 下载PDF
改进黑翅鸢算法优化神经网络的室内定位
19
作者 杨晶晶 万里宏 +2 位作者 张雪明 麦鴚 雷俊杰 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期229-237,共9页
针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagati... 针对传统无线信号的路径损耗模型(path loss model,PLM)在预测距离值时易受多径效应影响,导致在复杂室内环境中定位精度下降的问题,提出一种基于改进黑翅鸢算法(improved black-winged kite algorithm,IBKA)优化反向传播(back propagation,BP)神经网络的室内定位算法。分别引入Tent混沌映射、透镜成像反向学习策略和黄金正弦策略优化黑翅鸢算法,通过基准测试函数测试证实了IBKA拥有更好的性能,通过IBKA优化神经网络算法的初始权值和阈值建立IBKA-BP神经网络测距模型。在实验室内采集RSSI信号样本数据进行分析,结果表明所提IBKA-BP优化算法均方根误差为21.42 cm,小于PLM、GWO-BP、BKA-BP和ISSA-BP的63.25、47.04、33.77、28.78 cm,且收敛速度更快,在复杂室内环境下定位性能更好。 展开更多
关键词 改进黑翅鸢算法 BP神经网络 RSSI测距算法 路径损耗模型
在线阅读 下载PDF
高速车用电机的多目标优化设计研究
20
作者 高永新 汪洋 +1 位作者 刘俊毅 贾东 《汽车技术》 北大核心 2025年第9期17-26,共10页
针对扁线绕组的交流铜损和非晶合金铁芯转矩偏低的问题,利用有限元软件建立结构参数模型,以提高平均转矩、降低交流铜损、减少转矩脉动为优化目标,基于敏感度分析提取关键尺寸参数,并结合基于雁群启示的粒子群优化(WGA-PSO)算法进行多... 针对扁线绕组的交流铜损和非晶合金铁芯转矩偏低的问题,利用有限元软件建立结构参数模型,以提高平均转矩、降低交流铜损、减少转矩脉动为优化目标,基于敏感度分析提取关键尺寸参数,并结合基于雁群启示的粒子群优化(WGA-PSO)算法进行多目标优化设计和单参数扫描。通过有限元仿真比较优化前后电机性能,结果表明,优化后的电机平均转矩提高了5%,转矩脉动降低了12%,交流铜损降低了8%。最后制作样机并进行测试,验证了仿真结果的正确性。 展开更多
关键词 高速电机 交流铜损 扁线绕组 非晶合金 多目标优化设计 WGA-PSO 融合算法
在线阅读 下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部